

HEIDENHAIN

Encoders for Servo Drives

This brochure is not intended as an overview of the HEIDENHAIN product program. Rather it presents a selection of encoders for use on servo drives.

In the selection tables you will find an overview of all HEIDENHAIN encoders for use on electric drives and the most important specifications. The descriptions of the **technical features** contain fundamental information on the use of rotary, angular, and linear encoders on electric drives.

The mounting information and the detailed specifications refer to the rotary encoders developed specifically for drive technology. You will find more encoders in the corresponding product documents.

Brochure **Rotary Encoders**

Product Overview Rotary Encoders for the Elevator Industry

Brochure Angle Encoders With Integral Bearing

Product Overview Rotary Encoders for **Potentially Explosive** Atmospheres

(For more information:

For the linear and angular encoders also listed in the selection tables, you will find more detailed information, such as mounting information, specifications and dimensions in the respective product documents.

Brochure Modular Angle **Encoders** With Optical Scanning

Brochure Modular Angle **Encoders** With Magnetic Scanning

Brochure **Linear Encoders** For Numerically Controlled Machine Tools

Brochure **Exposed Linear Encoders**

For more information:

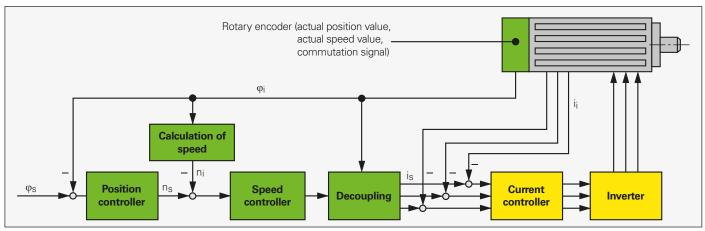
Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders brochure.

This brochure supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the brochure edition valid when the order is made.

Standards (ISO, EN, etc.) apply only where explicitly stated in the brochure.

Contents

Overview			
	Explanation of the selec	ction tables	6
	Rotary encoders for inte	egration in motors	8
	Rotary encoders for mo	unting on motors	12
	Rotary encoders and an	gle encoders for integrated and hollow-shaft motors	18
	Exposed linear encoder	s for linear drives	20
Technical features and mounting inform	nation		
	Rotary encoders and an	gle encoders for three-phase AC and DC motors	24
	HMC 6		26
	Linear encoders for line	ar drives	28
	Safety-related position	measuring systems	30
	Measuring principles		32
	Measuring accuracy		35
	Mechanical designs, mo	ounting and accessories	38
	General mechanical info	ormation	48
Specifications			
	Rotary encoders with	ECN/EQN 1100 series	56
	_	ERN 1023	58
		ERN 1123	60
		ECN/EQN 1300 series	62
		ECN/EQN 400 series	66
		ERN 1300 series	68
		EQN/ERN 400 series	70
		ERN 401 series	72
	Rotary encoders without	ECI/EQI 1100 series	74
	integral bearing	ECI/EBI 1100 series	76
		ECI/EQI 1300 series	78
		ECI/EBI 100 series	82
		ECI/EBI 4000 series	84
		ERO 1200 series	88
		ERO 1400 series	90
Electrical connection			
	Interfaces		92
	Cables and connecting	elements	104
	Interface electronics		114
	Diagnostic and testing	equipment	116

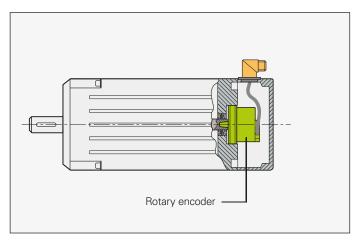

Encoders for servo drives

Controlling systems for servo drives require measuring systems that provide feedback for the position and speed controllers and for electronic commutation.

The properties of encoders have decisive influence on important motor qualities such as:

- Positioning accuracy
- Speed stability
- Bandwidth, which determines drive command-signal response and disturbance rejection capability
- Power loss
- Size
- Noise emission
- Safety

Digital position and speed control



HEIDENHAIN offers the appropriate solution for any of a wide range of applications using both rotary and linear motors:

All the HEIDENHAIN encoders shown in this brochure involve very little cost and effort for the motor manufacturer to mount and wire. Encoders for rotary motors are of short overall length. Some encoders, due to their special design, can perform functions otherwise handled by safety devices such as limit switches.

Motor for "digital" drive systems (digital position and speed control)

Angle encoders

Linear encoders

Explanation of the selection tables

The tables on the following pages list the encoders suited for individual motor designs. The encoders are available with dimensions and output signals to fit specific types of motors (DC or AC).

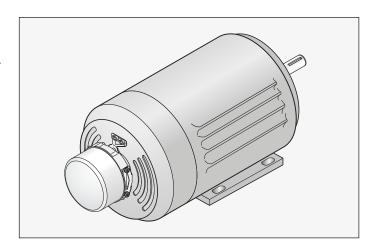
Rotary encoders for mounting on motors

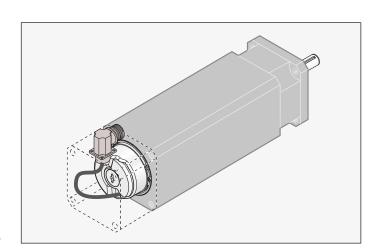
Rotary encoders for motors with forced ventilation are either built onto the motor housing or integrated. As a result, they are frequently exposed to the unfiltered forced-air stream of the motor and must have a high degree of protection, such as IP64 or better. The permissible operating temperature seldom exceeds 100 °C.

In the selection table you will find:

- Rotary encoders with mounted stator coupling with high natural frequency—virtually eliminating any limits on the bandwidth of the drive
- Rotary encoders for separate shaft couplings, which are particularly suited for insulated mounting
- Absolute rotary encoders with purely digital data transfer or complementary sinusoidal TTL or HTL incremental signals
- Incremental rotary encoders with high quality sinusoidal output signals for digital speed control
- Incremental rotary encoders with TTL or HTL compatible output signals
- Information on rotary encoders that are available as safetyrelated position encoders under the designation functional safety

For selection table see page 12

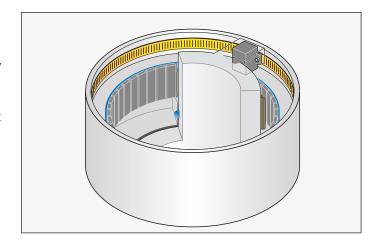

Rotary encoders for integration in motors


For motors without separate ventilation, the rotary encoder is built into the motor housing. This configuration places no stringent requirements on the encoder for a high degree of protection. The operating temperature within the motor housing, however, can reach 100 °C and higher.

In the selection table you will find:

- Absolute rotary encoders for operating temperatures up to 115 °C, incremental rotary encoders for operating temperatures up to 120 °C
- Rotary encoders with mounted stator coupling with high natural frequency—virtually eliminating any limits on the bandwidth of the drive
- Absolute rotary encoders with purely digital data transfer suited for the HMC 6 single-cable solutions—or complementary sinusoidal incremental signals
- Incremental rotary encoders for digital speed control with sinusoidal output signals of high quality—even at high operating temperatures
- Incremental rotary encoders with additional commutation signal for synchronous motors
- Incremental rotary encoders with TTL-compatible output signals
- Information on rotary encoders that are available as safetyrelated position encoders under the designation functional safety

For selection table see page 8


Rotary encoders, modular encoders and angle encoders for integrated and hollow-shaft motors

Rotary encoders and angle encoders for these motors have **hollow through shafts** in order to allow supply lines, for example, to be conducted through the motor shaft—and therefore through the encoder. Depending on the conditions of the application, the encoders must either feature up to IP66 protection or—for example with modular encoders using optical scanning—the machine must be designed to protect them from contamination.

In the selection table you will find:

- Encoders with high quality absolute and/or incremental output signals
- Angle encoders and modular encoders with the measuring standard on an aluminum or steel drum for shaft speeds up to 42 000 rpm
- Encoders with integral bearing, with stator coupling or modular design
- Encoders with good acceleration performance for a broad bandwidth in the control loop

For selection table see page 18

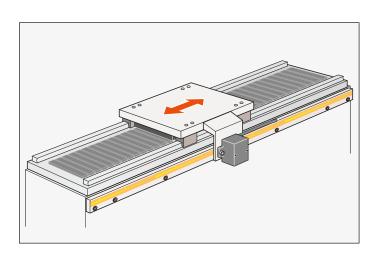
Linear encoders for linear motors

Linear encoders on linear motors supply the actual value both for the position controller and the velocity controller. They therefore form the basis for the servo characteristics of a linear drive. The linear encoders recommended for this application:

- Have low position deviation during acceleration in the measuring direction
- Have high tolerance to acceleration and vibration in the lateral direction
- Are designed for high velocities
- Provide absolute position information with purely digital data transmission or high-quality sinusoidal incremental signals

Exposed linear encoders are characterized by:

- Higher accuracy grades
- Higher traversing speeds
- Contact-free scanning, i.e., no friction between scanning head and scale


Exposed linear encoders are suited for applications in clean environments, for example on measuring machines or production equipment in the semiconductor industry.

For selection table see page 20

Sealed linear encoders are characterized by:

- A high degree of protection
- Simple installation

Sealed linear encoders are therefore ideal for applications in environments with airborne liquids and particles, such as on machine tools.

Selection guide

Rotary encoders for integration in motors

Protection: up to IP40 (EN 60529)

Series	Overall dimensions	Mechanically permissible speed	Natural frequency of stator coupling	Maximum operating temperature	Voltage supply				
Rotary encoders without integral bearing									
ECI/EQI 1100	22.5	≤ 15000 rpm/ ≤ 12000 rpm	-	110 °C	DC 3.6 V to 14 V				
ECI/EBI 1100	13 36.83			115 °C					
ECI/EQI 1300	28.8 Ø 64.98	≤ 15000 rpm/ ≤ 12000 rpm	-	115 °C	DC 4.75 V to 10 V				
	Ø 74 Ø 74 Ø 12.7				DC 3.6 V to 14 V				
ECI/EBI 100	D: 30/38/50 mm	≤ 6000 rpm	-	115 °C	DC 3.6 V to 14 V				
ECI/EBI 4000	62 20	≤ 6000 rpm	-	115 °C	DC 3.6 V to 14 V				
	D: 90/180 mm			100 °C	DC 10 V to 28.8 V				
ERO 1200	D: 10/12 mm	≤ 25000 rpm	_	100 °C	DC 5V ± 0.5V				
ERO 1400	4 0 0 4	≤ 30 000 rpm	-	70 °C	DC 5V ± 0.5V				
	₹ 29.2				DC 5 V ± 0.25 V				
	D: 4/6/8 mm				DC 5V ± 0.5V				

¹⁾ Also available with **functional safety**

²⁾ After internal 5/10/20/25-fold interpolation

Signal periods per revolution	Positions per revolution	Distinguishable revolutions	Interface	Model	Further information
ı					
-	524288 (19 bits)	-/ 4096	EnDat 2.2/22	ECI 1119 ¹⁾ /EQI 1131 ¹⁾	Page 74
	262 144 (18 bits)	-/65536 ³⁾	_	ECI 1118/EBI 1135	Page 76
32	524288 (19 bits)	-/4 096	EnDat 2.2/01 with \sim 1 V _{PP}	ECI 1319 ¹⁾ /EQI 1331 ¹⁾	Page 78
_			EnDat 2.2/22	_	Page 80
32	524288 (19 bits)	-	EnDat 2.1/01 with \sim 1 V _{PP}	ECI 119	Page 82
_		-/65536 ³⁾	EnDat 2.2/22	ECI 119/EBI 135	
_	1 048 576 (20 bits)	-/65 536 ³⁾	EnDat 2.2/22	ECI/EBI 4010	Page 84
		_	DRIVE-CLiQ	ECI 4090S	_
1024/2048	_		ГШТІ	ERO 1225	Page 88
			∼ 1 V _{PP}	ERO 1285	
512/1000/1024	_		ГШТІ	ERO 1420	Page 90
5000 to 37500 ²⁾			ПППГ	ERO 1470	
512/1000/1024			∼ 1 V _{PP}	ERO 1480	

^{| 3)} Multiturn function via battery-buffered revolution counter

Series	Overall dimensions	Mechanically permissible speed	Natural freq. of the stator coupling	Maximum operating temperature	Voltage supply				
Rotary encoders with integral bearing and mounted stator coupling									
ECN/EQN/ ERN 1100	38.4 % Ø Ø 6	≤ 12 000 rpm	≥ 1000 Hz	115 °C	DC 3.6 V to 14 V				
	29.8 % Ø8	≤ 6000 rpm	≥ 1600 Hz	90 °C	DC 5V ±0.5V				
ECN/EQN/ ERN 1300	Ø 64.8	≤ 15000 rpm/ ≤ 12000 rpm	≥ 1800 Hz	115 °C	DC 3.6 V to 14 V				
	50.5 3.2 3.1 3.2 (not with ERN)	≤ 15000 rpm		120 °C <i>ERN 1381/4096:</i> 80 °C	DC 5V ±0.5V				
					DC 5V ± 0.25V				
					DC 10 V to 28.8 V				
1) Also available with f	unctional safety								

Signal periods per revolution	Positions per revolution	Distinguishable revolutions	Interface	Model	Further Information
512	8192 (13 bits)	-/4096	EnDat 2.2/01 with \sim 1 V _{PP}	ECN 1113/EQN 1125	Page 56
_	8388608 (23 bits)		EnDat 2.2/22	ECN 1123 ¹⁾ /EQN 1135 ¹⁾	
500 to 8192	3 block commutation	n signals	Г⊔П	ERN 1123	Page 60
512/2048	8192 (13 bits)	-/4096	EnDat 2.2/01 with \sim 1 V _{PP}	ECN 1313/EQN 1325	Page 62
-	33554432 (25 bits)		EnDat 2.2/22	ECN 1325 ¹⁾ /EQN 1337 ¹⁾	
1024/2048/4096	_		ГШТТ	ERN 1321	Page 68
	3 block commutation	n signals		ERN 1326	
512/2048/4096	_		∼1V _{PP}	ERN 1381	
2048	Z1 track for sine con	nmutation		ERN 1387	
_	16777216 (24 bits)	-/4096	DRIVE-CLiQ	ECN 1324S/EQN 1336S	Page 64

Rotary encoders for mounting on motors

Protection: up to IP64 (EN 60529)

Series	Overall dimensions	Mechanically permissible speed	Natural freq. of the stator coupling	Maximum operating temperature	Voltage supply					
Rotary encoders	Rotary encoders with integral bearing and mounted stator coupling									
ECN/ERN 100	780 40	<i>D</i> ≤ 30 mm: ≤ 6000 rpm	≥ 1000 Hz	100 °C	DC 3.6 V to 14 V					
	55 max. Ø D D: 50 mm max.	<i>D > 30 mm:</i> ≤ 4000 rpm			DC 5V ± 0.5V					
	<i>3.66</i> mmmax			85 °C	DC 10 V to 30 V					
ECN/EQN/ERN 400	Stator coupling for plane surfaces	≤ 6000 rpm With two shaft	Stator coupling for plane surfaces:	100 °C	DC 3.6 V to 14 V					
	54.4 Ø 12	clamps (only for hollow through	≥ 1500 Hz Universal stator		DC 4.75 V to 30 V					
	Universal stator coupling	<i>shaft):</i> ≤ 12 000 rpm	coupling: ≥ 1400 Hz		DC 5V ± 0.5 V					
					DC 10 V to 30 V					
	47.2 Ø 12			70 °C						
				100 °C	DC 5V ± 0.5 V					
ECN/EQN/ERN 400	Stator coupling for plane surfaces 54.4 Ø 12	for plane With two shaft surfaces: clamps (only for ≥ 1500 Hz hollow through Universal s		100 °C	DC 10 V to 30 V					
			≥ 1500 Hz <i>Universal stator</i>		DC 4.75 V to 30 V					
		shaft): ≤ 12000 rpm	coupling: ≥ 1400 Hz		DC 3.6 V to 14 V					
					DC 10 V to 28.8 V					
ECN/EQN/ERN 400	Expanding ring coupling	≤ 15000 rpm/ ≤ 12000 rpm	Expanding ring coupling: ≥ 1800 Hz	100 °C	DC 3.6 V to 14 V					
	50.5	≤ 15000 rpm	Plane-surface coupling:		DC 5V ± 0.5 V					
			≥ 400 Hz		DC 5V ± 0.25V					
	Plane-surface coupling 50.5 1:10									

¹⁾ Also available with **functional safety**

Signal periods per revolution	Positions per revolution	Distinguishable revolutions	Interface	Model	Further information
2048	8192 (13 bits)	-	EnDat 2.2/01 with \sim 1 V _{PP}	ECN 113	Brochure: Rotary
-	33554432 (25 bits)		EnDat 2.2/22	ECN 125	Encoders
1000 to 5000	_		□□TTL/~ 1 V _{PP}	ERN 120/ERN 180	
			□□HTL	ERN 130	
512/2048	8192 (13 bits)	-/4096	EnDat 2.2/01 ~ 1 V _{PP}	ECN 413/EQN 425	
-	33554432 (25 bits)		EnDat 2.2/22	ECN 425/EQN 437	
512	8192 (13 bits)		SSI	ECN 413/EQN 425	
250 to 5000	_		ГШТТ	ERN 420	
			□□HTL	ERN 430	
			ПППГ	ERN 460	
1000 to 5000			∼1V _{PP}	ERN 480	
256 to 2048	8192 (13 bits)	-/ 4096	EnDat H HTL HTL SSI 41H HTL	EQN 425	Brochure: Rotary Encoders
512 to 4096			EnDatT □□TTL SSI 41T □□TTL		
_	αi: 33554432 (25 bits)	4096	Fanuc05/Fanuc02/Fanuc06	ECN 425 F/EQN 437 F	
	33554432 (25 bits)/ 8388608 (23 bits)		Mit03-4	ECN 425 M/EQN 435 M	
	16777216 (24 bits)		DQ01	ECN 424S/EQN 436S	
2048	8192 (13 bits)	-/4096	EnDat 2.2/01 with \sim 1 V _{PP}	ECN 413/EQN 425	Page 66
-	33554432 (25 bits)		EnDat 2.2/22	ECN 425 ¹⁾ /EQN 437 ¹⁾	
1024 to 5000	_		ПППГ	ERN 421	Product Information
2048	Z1 track for sine com	mutation		ERN 487	inionnation

Rotary encoders for mounting on motors

Protection: up to IP64 (EN 60529)

Series	Overall dimensions	Mechanically permissible speed	Natural freq. of the stator coupling	Maximum operating temperature	Voltage supply					
Rotary encoders	Rotary encoders with integral bearing and mounted stator coupling									
ECN/EQN/ERN 1000	42.1	≤ 12 000 rpm	≥ 1500 Hz	100 °C	DC 3.6 V to 14 V					
					DC 4.75 V to 30 V					
	\$\frac{\pi}{\pi} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				DC 3.6 V to 14 V					
	ERN 1023				DC 5V ± 0.5V					
	4			70 °C	DC 10 V to 30 V					
	23.2				DC 5V ± 0.25 V					
		≤ 6000 rpm	≥ 1600 Hz	90 °C	DC 5V ± 0.5V					
Rotary encoders	with integral bearing and t	orque supports fo	or Siemens dri	ves						
EQN/ERN 400	46.2	≤ 6000 rpm	_	100 °C	DC 3.6 V to 14 V					
	252				DC 10 V to 30 V					
					DC 5V ± 0.5V					
					DC 10 V to 30 V					
ERN 401	82.6	≤ 6000 rpm	_	100 °C	DC 5V ± 0.5V					
	883				DC 10 V to 30 V					

¹⁾ After internal 5/10/20/25-fold interpolation

Signal periods per revolution	Positions per revolution	Distinguishable revolutions	Interface	Model	Further information
512	8192 (13 bits)	-/4096	EnDat 2.2/01 with \sim 1 V _{PP}	ECN 1013/EQN 1025	Brochure: Rotary
			SSI		Encoders
_	8388608 (23 bits)		EnDat 2.2/22	ECN 1023/EQN 1035	
100 to 3600	_		□□TTL/~ 1 V _{PP}	ERN 1020/ERN 1080	
			□ HTLs	ERN 1030	
5000 to 36000 ¹⁾			Г⊔П∟	ERN 1070	
500 to 8192	3 block commutation	signals		ERN 1023	Page 58
				,	
2048	8192 (13 bits)	4096	EnDat 2.1/01 with \sim 1 V_{PP}	EQN 425	Page 70
			SSI		
1024	_		ГШП	ERN 420	_
			□□HTL	ERN 430	
1024			ПППГ	ERN 421	Page 72
			□□HTL	ERN 431	

Rotary encoders for mounting on motors

Protection: up to IP64 (EN 60529)

Series	Overall dimensions	Mechanically permissible speed	Natural frequency of stator coupling	Maximum operating temperature	Voltage supply				
Rotary encoders with integral bearing for separate shaft coupling									
ROC/ROQ/ROD 400 RIC/RIQ	Synchro flange	≤ 12 000 rpm	_	100 °C	DC 3.6 V to 14 V				
	42.7				DC 5 V				
	Clamping flange				DC 4.75 V to 30 V				
	36.7 Ø 10				DC 10 V to 30 V				
					DC 4.75 V to 30 V				
					DC 3.6 V to 14 V				
					DC 10 V to 28.8 V				
					DC 5 V ± 0.5 V				
					DC 10 V to 30 V				
				70 °C					
				100 °C	DC 5 V ± 0.5 V				
ROC/ROQ/ROD 1000		≤ 12 000 rpm	-	100 °C	DC 3.6 V to 14 V				
	34 Ø4				DC 4.75 V to 30 V				
	(c) 34 0 4				DC 3.6 V to 14 V				
					DC 5 V ± 0.5 V				
				70 °C	DC 10 V to 30 V				
					DC 5V ± 0.25V				
ROD 600	9.60 0 0 15	≤ 12 000 rpm	-	80 °C	DC 5V ± 0.5V				
ROD 1900	150 18 160	≤ 4000 rpm	-	70 °C	DC 10 V to 30 V				

¹⁾ Also available with **functional safety**2) After integral 5/10-fold interpolation
3) Only clamping flange

Signal periods per revolution	Positions per revolution	Distinguishable revolutions	Interface	Model	Further information
512/2048	8192 (13 bits)	-/4096	EnDat 2.2/01 with \sim 1 V _{PP}	ROC 413/ROQ 425	Brochure:
-	33554432 (25 bits)		EnDat 2.2/22	ROC 425 ¹⁾ /ROQ 437 ¹⁾	Rotary Encoders
16	262 144 (18 bits)		EnDat 2.1/01	RIC 418/RIQ 430	
512	8192 (13 bits)		SSI	ROC 413/ROQ 425	
256 to 2048	8192 (13 bits)	-/ 4096	EnDat H I HTL SSI 41H I HTL	ROQ 425 ³⁾	
512 to 4096			EnDatT ILLITTL SSI 41T ILLITTL		
_	αi: 33554432 (25 bits)	4096	Fanuc05/Fanuc02/Fanuc06	ROC 425 F/ROQ 437 F	
	33554432 (25 bits)/ 8388608 (23 bits)		Mit03-4	ROC 425 M/ROQ 435 M	
	16777216 (24 bits)		DQ01	ROC 424 S/EQN 436 S	
50 to 10000 ²⁾	-	_	ПППГ	ROD 426/ROD 420	
50 to 5000			□ HTL	ROD 436/ROD 430	
50 to 10000 ²⁾			ПППГ	ROD 466	
1000 to 5000	_		∼1 V _{PP}	ROD 486/ROD 480	
512	8192 (13 bits)	-/4096	EnDat 2.2/01 with \sim 1 V _{PP}	ROC 1013/ROQ 1025	Brochure: Rotary
			SSI		Encoders
-	8388608 (23 bits)		EnDat 2.2/22	ROC 1023/ROQ 1035	
100 to 3600	_		ГШП	ROD 1020	
			∼1 V _{PP}	ROD 1080	
			□ HTLs	ROD 1030	
5000 to 36000 ²⁾			ГШП	ROD 1070	
512 to 5000	-		ГШП	ROD 620	
			Г⊔нт∟	ROD 630	
600 to 2400	-		□□ HTL/HTLs	ROD 1930	

Rotary encoders and angle encoders for integrated and hollow-shaft motors

Series	Overall dimensions	Diameter	Mechanically permissible speed	Natural freq. of the stator coupling	Maximum operating temperature					
Angle encoders with integral bearing and integrated stator coupling										
RCN 2000	55 Ø 20	_	≤ 1500 rpm	≥ 1000 Hz	RCN 23xx: 60 °C RCN 25xx: 50 °C					
RCN 5000	01L 42 Ø 35	-	≤ 1500 rpm	≥ 1000 Hz	RCN 53xx: 60 °C RCN 55xx: 50 °C					
RCN 8000	40 Ø D	D: 60 mm and 100 mm	≤ 500 rpm	≥ 900 Hz	50 °C					
Modular angle e	encoders with optical scann	ing								
ERA 4000 Steel scale drum	46 19	D1: 40 mm to 512 mm D2: 76.75 mm to 560.46 mm	≤ 10000 rpm to ≤ 1500 rpm	-	80 °C					
ERA 7000 For inside diameter mounting	9 46	D: 458.62 mm to 1146.10 mm	≤ 250 rpm to ≤ 220 rpm	-	80 °C					
ERA 8000 For outside diameter mounting	46	D: 458.11 mm to 1145.73 mm	≤ 50 rpm to ≤ 45 rpm	-	80 °C					
Modular encode	ers with magnetic scanning									
ERM 2200 Signal period of approx. 200 μm ERM 2400 Signal period of approx. 400 μm	50 20 20 20 20 20 20 20 20 20 20 20 20 20	D1: 40 mm to 410 mm D2: 75.44 mm to 452.64 mm	≤ 19000 rpm to ≤ 3000 rpm	_	100 °C					
ERM 2400 Signal period of approx. 400 μm	50 00 20	D1: 40 mm to 100 mm D2: 64.37 mm to 128.75 mm	≤ 42 000 rpm to ≤ 20 000 rpm	_	100 °C					
ERM 2900 Signal period of approx. 1000 μm	and Mitcubichi controle upon regu	D1: 40 mm to 100 mm D2: 58.06 mm to 120.96 mm	≤ 35000 rpm/ ≤ 16000 rpm							

¹⁾ Interfaces for Fanuc and Mitsubishi controls upon request

²⁾ Segment solutions upon request

Voltage supply	System accuracy	Signal periods per revolution	Positions per revolution	Interface ¹⁾	Model	Further information
DC 3.6 V to 14 V	±5" ±2.5"	16384	67 108 864 (26 bits) 268 435 456 (28 bits)	EnDat 2.2/02 with \sim 1 V _{PP}	RCN 2380 RCN 2580	Brochure: Angle Encoders
	±5" ±2.5"	-	67 108 864 (26 bits) 268 435 456 (28 bits)	EnDat 2.2/22	RCN 2310 ³⁾ RCN 2510 ³⁾	With Integra Bearing
DC 3.6 V to 14 V	±5" ±2.5"	16384	67 108 864 (26 bits) 268 435 456 (28 bits)	EnDat 2.2/02 with \sim 1 V _{PP}	RCN 5380 RCN 5580	
	±5" ±2.5"	_	67 108 864 (26 bits) 268 435 456 (28 bits)	EnDat 2.2/22	RCN 5310 ³⁾ RCN 5510 ³⁾	
DC 3.6 V to 14 V	±2" ±1"	32768	536870912 (29 bits)	EnDat 2.2/02 with \sim 1 V _{PP}	RCN 8380 RCN 8580	
	±2" ±1"	-		EnDat 2.2 / 22	RCN 8310 ³⁾ RCN 8510 ³⁾	
DC 5 V ± 0.5 V		12000 to 52000	_	∼1 V _{PP}	ERA 4280C	Brochure: Angle Encoders Without
		6000 to 44000			ERA 4480C	
		3000 to 13000			ERA 4880C	Integral Bearing
DC 5 V ± 0.25 V	-	Full circle ²⁾ 36000 to 90000	-	∼ 1 Vpp	ERA 7480 C	Bearing
DC 5 V ± 0.25 V	-	Full circle ²⁾ 36000 to 90000	_	∼1 V _{PP}	ERA 8480C	
DC 5 V ± 0.5 V	-	600 to 3600	_		ERM 2420	Brochure: Modular Angle Encoders With Magnetic
				∼1 Vpp	ERM 2280 ERM 2480	
DC 5 V ± 0.5 V	_	512 to 1024	_	∼1 V _{PP}	ERM 2484	Scanning
		256/400	-	-	ERM 2984	
³⁾ Also available wi	th functional	safety				

Also available with **functional safety**

Exposed linear encoders for linear drives

Series	Overall dimensions	Traversing speed	Acceleration In measuring direction	Accuracy grade
LIP 400	<u>5</u> <u>∞</u> <u>ω</u> <u>1</u> <u>ω</u> <u> ω</u> 1 <u>ω</u> 1 <u>ω</u> <u> ω</u> 1 <u>ω</u> 1 <u>ω</u> 1 <u>ω</u> <u> ω</u> 1 <u>ω</u> 1 <u>ω</u> 1 <u>ω</u> 1 <u>ω</u> 1 <u>ω</u> 1 <u>ω</u>	≤ 30 m/min	≤ 200 m/s ²	To ±0.5 μm
LIF 400	3.05 ML + 10 Q	≤ 72 m/min	≤ 200 m/s ²	± 3 µm
LIC 2100 Absolute linear encoder	2.58 <u>9</u>	≤ 600 m/min	≤ 200 m/s ²	± 15 μm
LIC 4100 Absolute linear encoder	ML + 202 00 12	≤ 600 m/min	≤ 500 m/s ²	±5 µm
	2.7 ML + 30 \omega 12			±5 µm ¹⁾
LIDA 400	3.05 © ML + 28 © 12	≤ 480 m/min	≤ 200 m/s ²	±5 µm
	ML + 202 & 12			±5 μm ¹⁾
LIDA 200	2.6 ML + 30 9 12 7	≤ 600 m/min	≤ 200 m/s ²	± 30 µm
PP 200 Two-coordinate encoder	3 8 24	≤ 72 m/min	≤ 200 m/s ²	± 2 µm

¹⁾ After linear error compensation

Measuring lengths	Voltage supply	Signal period	Cutoff frequency -3 dB	Switching output	Interface	Model	Further information
70 mm to 420 mm	DC 5 V ± 0.25 V	2 μm	≥ 250 kHz	-	∼1 V _{PP}	LIP 481	Brochure: Exposed Linear Encoders
70 mm to 1020 mm	DC 5 V ± 0.25 V	4 μm	≥ 300 kHz	Homing track Limit switches	∼ 1 Vpp	LIF 481	
120 mm to 3020 mm	DC 3.6 V to 14 V	-	-	-	EnDat 2.2/22 Resolution 0.05 µm	LIC 2107	
140 mm to 27 040 mm	DC 3.6 V to 14 V	_	_	_	EnDat 2.2/22 Resolution 0.001 µm	LIC 4115	
140 mm to 6040 mm						LIC 4117	
140 mm to 30 040 mm	DC 5 V ± 0.25 V	20 μm	≥ 400 kHz	Limit switches	∼ 1 V _{PP}	LIDA 485	
240 mm to 6040 mm						LIDA 487	
Up to 10 000 mm	DC 5 V ± 0.25 V	200 μm	≥ 50 kHz	_	∼1V _{PP}	LIDA 287	
Measuring range 68 mm x 68 mm	DC 5V ± 0.25V	4 µm	≥ 300 kHz	_	∼1V _{PP}	PP 281	

Sealed linear encoders for linear drives

Protection: IP53 to IP64¹⁾ (EN 60 529)

Series	Overall dimensions	Traversing speed	Acceleration In measuring direction	Natural frequency of coupling	Measuring lengths		
Linear encoders with slimline scale housing							
LF	ML + 158 18 18 46.2	≤ 60 m/min	≤ 100 m/s ²	≥ 2000 Hz	50 mm to 1220 mm		
LC Absolute linear encoder	ML + 138 18 18 18	≤ 180 m/min	≤ 100 m/s ²	≥ 2000 Hz	70 mm to 2040 mm ³⁾		
Linear encoders v	with full-size scale housing						
LF	ML + 121 25 37	≤ 60 m/min	≤ 100 m/s ²	≥ 2000 Hz	140 mm to 3040 mm		
Absolute linear encoder		≤ 180 m/min	≤ 100 m/s ²	≥ 2000Hz	140 mm to 4240 mm		
	ML + 121 8 37				140 mm to 3040 mm		
					140 mm to 4240 mm		
	ML + 276 8 50				140 mm to 3040 mm		
		≤ 120 m/min (180 m/min upon request)	≤ 100 m/s ²	≥ 780 Hz	3240 mm to 28040 mm		
LB	ML + 276	≤ 120 m/min (180 m/min upon request)	≤ 60 m/s ²	≥ 650 Hz	440 mm to 30040 mm (up to 72040 mm upon request)		

¹⁾ After installation according to mounting instructions
2) Interfaces for Siemens, Fanuc and Mitsubishi controls upon request
3) Measuring lengths from 1340 mm only with spar or clamping elements
4) Also available with functional safety

Accuracy grade	Voltage supply	Signal period	Cutoff frequency-3 dB	Resolution	Interface ²⁾	Model	Further information
						•	
±5 μm	DC 5V ± 0.25V	4 μm	≥ 250 kHz	_	∼1V _{PP}	LF 485	Brochure: Linear Encoders For Numerically Controlled
±5 μm	DC 3.6 V to 14 V	-	-	To 0.01 μm	EnDat 2.2/22 LC 41	LC 415 ⁴⁾	Machine Tools
± 3 µm				To 0.001 µm			
±5 μm		20 μm	≥ 150 kHz	To 0.01 μm	EnDat 2.2/02	LC 485	_
± 3 µm				To 0.05 µm	-		
±2 μm; ± 3 μm	DC 5V ± 0.25V	4 μm	≥ 250 kHz	-	∼ 1 V _{PP}	LF 185	Brochure: Linear Encoders For Numerically
±5 μm	DC 3.6 V to 14 V	-	_	To 0.01 μm	EnDat 2.2/22	LC 115 ⁴⁾	Controlled Machine Tools
± 3 µm				To 0.001 µm			
±5 μm		20 μm	≥ 150 kHz	To 0.01 µm	EnDat 2.2/02	LC 185	_
± 3 µm				To 0.05 µm			
±5 μm	DC 3.6 V to 14 V	_	_	To 0.01 µm	EnDat 2.2/22	LC 211	_
		40 μm	≥ 250 kHz		EnDat 2.2/02 with \square 1 V_PP	LC 281	
To ±5 μm	DC 5V ± 0.25V	40 μm	≥ 250 kHz	-	∼ 1 V _{PP}	LB 382	

Rotary encoders and angle encoders for three-phase AC and DC motors

General information

Speed stability

To ensure **smooth drive performance**, an encoder must provide a **large number of measuring steps per revolution**. The encoders in the HEIDENHAIN product program are therefore designed to supply the necessary numbers of measuring steps per revolution to meet the speed stability requirement.

HEIDENHAIN rotary encoders angle encoders featuring integral bearing and stator coupling provide very good performance: shaft misalignment within certain tolerances (see *Specifications*) does not cause any position error or impair speed stability.

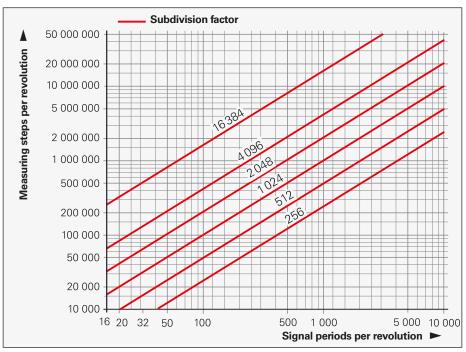
At low speeds, the encoder's **position error within one signal period** affects speed stability. In encoders with purely serial data transmission, the LSB (Least Significant Bit) goes into the speed stability (see also *Measuring accuracy*).

Transmission of measuring signals

To ensure the best possible dynamic performance with digitally controlled motors, the sampling time of the speed controller should not exceed approx. 125 µs. The feedback values for the position and speed controller must therefore be available in the controlling system with the least possible delay.

High clock frequencies are needed to fulfill such demanding time requirements on position-value transfer from the encoder to the controlling system with serial data transmission (see also *Interfaces; Absolute Position Values*). HEIDENHAIN encoders for servo drives therefore provide the position values via the fast, **purely serial EnDat 2.2 interface**, or transmit additional **incremental signals** that are available without delay for use in the subsequent electronics for speed and position control.

For **standard drives**, manufacturers primarily use the especially robust HEIDENHAIN **ECI/EQI** encoders without integral bearing or rotary encoders with **TTL** or **HTL compatible output signals**—as well as additional commutation signals for permanent-magnet DC drives.


For **digital speed control** on machines with **high requirements for dynamics**, a large number of measuring steps is required—usually above 500 000 per revolution. For applications with standard drives, as with resolvers, approx. 60 000 measuring steps per revolution are sufficient.

HEIDENHAIN encoders for drives with digital position and speed control are therefore equipped with the **purely serial EnDat22 interface**, or they additionally provide **sinusoidal incremental signals** with signal periods of 1 V_{PP} (EnDat01).

The high internal resolution of the **EnDat22** encoders permits resolutions up to 19 bits (524 288 measuring steps) in inductive systems and at least 23 bits (approx. 8 million measuring steps) in photoelectric encoders.

Thanks to their high signal quality, the sinusoidal incremental signals of the **EnDat01** encoders can be highly subdivided in the subsequent electronics (see Figure 1). Even at shaft speeds of 12 000 rpm, the signal arrives at the input circuit of the controlling system with a frequency of only approx. 400 kHz (see Figure 2). 1 V_{PP} incremental signals allow cable lengths up to 150 m (see also *Incremental signals – 1 V_{PP}*).

Fig. 1:Signal periods per revolution and the resulting number of measuring steps per revolution as a function of the subdivision factor

HEIDENHAIN absolute encoders for "digital" drives also supply additional sinusoidal incremental signals with the same characteristics as those described above. Absolute encoders from HEIDENHAIN use the EnDat interface (for Encoder Data) for the **serial data transmission** of absolute position values and other information for **automatic self-configuration, monitoring and diagnosis.** (See *Absolute position values – EnDat.*) This makes it possible to use the same subsequent electronics and cabling technology for all HEIDENHAIN encoders.

Important encoder specifications can be read from the memory of the EnDat encoder for automatic self-configuration, and motor-specific parameters can be saved in the OEM memory area of the encoder. The usable size of the OEM memory in the rotary encoders in the current brochures is at least 1.4 KB (≙ 704 EnDat words).

Most absolute encoders themselves already subdivide the sinusoidal scanning signals by a factor of 4096 or greater. If the **transmission** of absolute positions is fast enough (for example, EnDat 2.1 with 2 MHz or **EnDat 2.2** with 16 MHz clock frequency), these systems can **do without incremental signal evaluation**.

Benefits of this data transmission technology include **greater noise immunity** of the transmission path and **less expensive connectors and cables.** Rotary encoders with EnDat 2.2 interface offer the additional feature of being able to **evaluate** an external **temperature sensor**, located in the motor coil, for example. The digitized temperature values are transmitted as part of the EnDat 2.2 protocol without an additional line.

Bandwidth

The attainable gain for the position and speed control loops, and therefore the bandwidth of the drives for command response and control reliability, are sometimes limited by the rigidity of the coupling between the motor shaft and encoder shaft as well as by the natural frequency of the stator coupling. HEIDENHAIN therefore offers rotary and angular encoders for high-rigidity shaft coupling.

The stator couplings mounted on the encoders have a **high natural frequency** of typically 1800 Hz. For the modular and inductive rotary encoders, the stator and rotor are firmly screwed to the motor housing and to the shaft (see also *Mechanical design types and mounting*). This mechanical design therefore permits optimal rigidity of the coupling.

Motor currents

Motors are sometimes subjected to impermissible current from the rotor to the stator. This can result in overheating in the encoder bearing and reduce its service life. HEIDENHAIN therefore recommends encoders without integral bearings or with insulating bearings (hybrid bearings). For more information, please contact HEIDENHAIN.

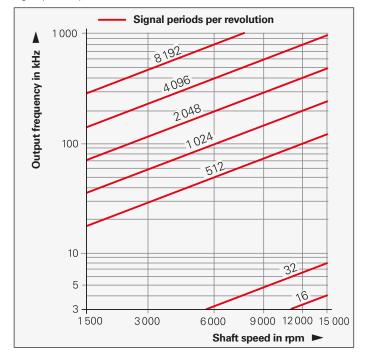
Fault exclusion for mechanical coupling

HEIDENHAIN encoders designed for functional safety can be mounted so that the rotor or stator fastening does not accidentally loosen.

Size

A higher permissible operating temperature permits a smaller motor size for a specific rated torque. Since the temperature of the motor also affects the temperature of the encoder, HEIDENHAIN offers encoders for **permissible operating temperatures up to 120 °C.** These encoders make it possible to design machines with smaller motors.

Power loss and noise emission


The power loss of the motor, the accompanying heat generation, and the acoustic noise of motor operation are influenced by the position error of the encoder within one signal period. For this reason, rotary encoders with a high signal quality of better than ±1 % of the signal period are preferred (see also *Measuring accuracy*).

Bit error rate

For rotary encoders with purely serial interface for integration in motors, HEIDENHAIN recommends conducting a type test for the bit error rate.

When using functionally safe encoders without closed metal housings and/or with cable assemblies that do not comply with the electrical connection directives (see *General electrical information*) it is always necessary to measure the bit error rate in a type test under application conditions.

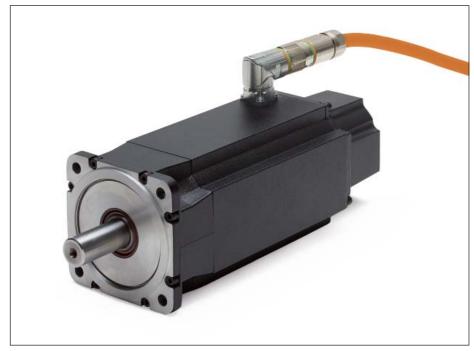
Figure 2: Shaft speed and resulting output frequency as a function of the number of signal periods per revolution

HMC₆

Single-cable solution for servo drives

Motors normally need two separate cables:

- One cable for the motor encoder
- One cable for the motor power supply


With its Hybrid Motor Cable **HMC 6**, HEIDENHAIN has integrated the encoder lines in the power cable. So now only **one cable** is needed between the motor and electrical cabinet.

The HMC 6 single-cable solution has been specially conceived for the HEIDENHAIN **EnDat22** interface with purely serial transmission over cable lengths up to 100 m. However, all other encoders with purely serial RS-485 interface (e.g. SSI) can also be connected. This makes a broad range of encoders available without having to introduce a new interface.

The HMC 6 integrates the lines for encoders, motors and brakes in only one cable. It is connected to the motor via a special connector. For connection to the inverter, the cable is split into power connections and an encoder connector. This makes it compatible on the control side with all the same components as conventional cables.

If the components are correctly mounted, the connections will have the IP67 degree of protection. Vibration protection against loosening of coupling joints is integrated in the connector, as also is the quick-release lock.

Advantages

The HMC 6 single-cable solution offers a series of cost and quality improvements both for the motor manufacturer and the machine tool builder:

- No need to replace existing interfaces
- Allows smaller drag chains
- A smaller number of cables significantly improves drag chain flexibility
- A wide range of encoders is available for HMC 6 transmission
- There is no assignment of cable contacts in the machine
- Reduces mechanical requirements (flange socket on the motor, cable ducts in the machine housing)
- Lower shipping and storage costs for cables and connectors
- Installation is simpler and faster
- Lower cost of documentation

- Fewer service components are required
- The contour including the cable is smaller, making it easier to integrate the motor in the machine housing
- The combination of power cable and encoder cable has been tested by HEIDENHAIN

The universal design of the HMC 6 provides you—as motor manufacturer or machine tool builder—with the greatest possible flexibility, because you can use standard components—both on the motor and the control side.

A particular advantage: **all HEIDENHAIN encoders with EnDat22 interface** or with purely serial data transfer without battery buffering as per RS-485 are suited for the HMC 6 single-cable solution. They include motor encoders for servo drives in their various sizes, as well as linear and angle encoders used in direct drives. And of course it also includes encoders for **functional safety** up to SIL 3.

But there is no need for acrobatics on the control side either: you can use the same inverter systems or controller units as before. The HMC 6 cable has been designed to be easy for you to wire it to the proper connector systems. And most importantly: there is no reduction in noise immunity.

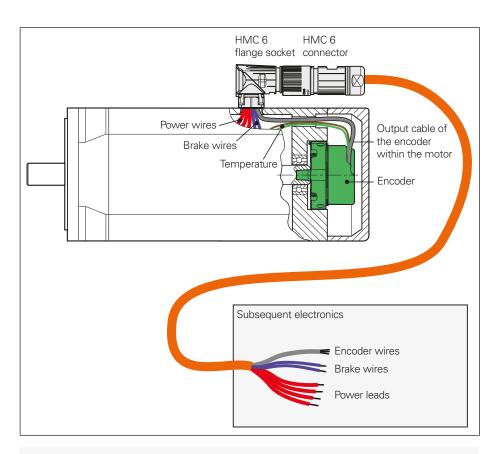
Components

You only need a few components to make your motor ready for the single-cable solution.

Connecting element on the motor

The motor housing must be equipped with a special angle flange socket, in which the contacts for the encoder, the motor power and the brake are included.

Crimp tools for the power lines


The crimp contacts for power and brake wires are added using the usual tools.

Cables inside the motor housing

The rotary encoder is connected through the output cable inside the motor: your ready-wired communication element is simply latched to the angle flange socket.

Cable with hybrid connector

Besides the wires to the encoder, the HMC connecting cable with the motor also includes those for the motor power and brake. It is wired at one end with a hybrid connector

You can find more information on the HMC 6 in the Product Information document HMC 6.

Linear encoders for linear drives

General information

Selection criteria for linear encoders

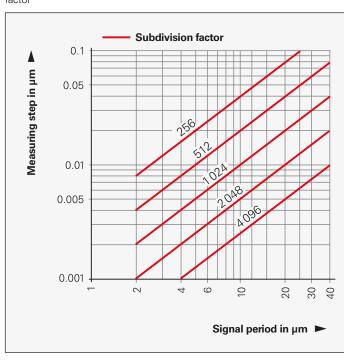
HEIDENHAIN recommends the use of **exposed linear encoders** whenever the severity of contamination inherent in a particular machine environment does not preclude the use of optical measuring systems, and if relatively high accuracy is desired, e.g. for high-precision machine tools and measuring equipment, or for production, testing and inspecting equipment in the semiconductor industry.

Particularly for applications on machine tools that release coolants and lubricants, HEIDENHAIN recommends **sealed linear encoders**. Here the requirements on the mounting surface and on machine guideway accuracy are less stringent than for exposed linear encoders, and therefore installation is faster.

Speed stability

To ensure smooth-running servo performance, the linear encoder must permit a resolution commensurate with the given speed control range:

- On handling equipment, resolutions in the range of several microns are sufficient
- Feed drives for machine tools need resolutions of 0.1 um and finer
- Production equipment in the semiconductor industry requires resolutions of a few nanometers


At low traversing speeds, the **interpolation error within one signal period** has a decisive influence on the speed stability of linear motors (see also *Measuring accuracy*).

Traversing speeds

Exposed linear encoders function without contact between the scanning head and the scale. The maximum permissible traversing speed is limited only by the cutoff frequency (–3 dB) of the output signals.

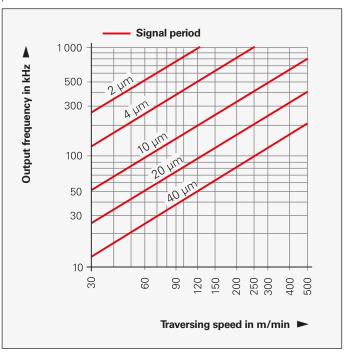
On sealed linear encoders, the scanning unit is guided along the scale on a ball bearing. Sealing lips protect the scale and scanning unit from contamination. The ball bearing and sealing lips permit mechanical traversing speeds up to **180 m/min**.

Signal period and resulting measuring step as a function of the subdivision factor

Transmission of measuring signals

The information given for rotary and angle encoder signal transmission essentially applies also to linear encoders. If, for example, one wishes to traverse at a minimum velocity of 0.01 m/min with a sampling time of 250 µs, and if one assumes that the measuring step should change by at least one measuring step per sampling cycle, then one needs a measuring step of approx. 0.04 µm. To avoid the need for special measures in the subsequent electronics, input frequencies should be limited to less than 1 MHz. Linear encoders with sinusoidal output signals or absolute position values according to EnDat 2.2 are best suited for high traversing speeds and small measuring steps. Sinusoidal signals with levels of 1 VPP in particular permit a -3 dB cutoff frequency of approx. 200 kHz and more at permissible cable lengths up to 150 m.

The figure below illustrates the relationship between output frequency, traversing speeds, and signal periods of linear encoders. Even at a signal period of 4 μ m and traversing speeds up to 70 m/min, frequencies of only 300 kHz are attained.


Bandwidth

On linear motors, a coupling lacking in rigidity can limit the bandwidth of the position control loop. The manner in which the linear encoder is mounted on the machine has a very significant influence on the rigidity of the coupling (see *Design types and mounting*).

On sealed linear encoders, the scanning unit is guided along the scale. A coupling connects the scanning carriage with the mounting block and compensates the misalignment between the scale and the machine guideways. This permits relatively large mounting tolerances. The coupling is very rigid in the measuring direction and is flexible in the perpendicular direction. If the coupling is insufficiently rigid in the measuring direction, it could cause low natural frequencies in the position and velocity control loops and thus limit the bandwidth of the drive.

The sealed linear encoders recommended by HEIDENHAIN for linear motors generally have a **natural frequency of coupling greater than 650 Hz or 2 kHz in the measuring direction,** which in most applications exceeds the mechanical natural frequency of the machine and the bandwidth of the velocity control loop by factors of at least five to ten. HEIDENHAIN linear encoders for linear motors therefore have practically no limiting effect on the position and speed control loops.

Traversing speed and resulting output frequency as a function of the signal period

(For more information:

For more information on linear encoders for linear drives, refer to our brochures Exposed Linear Encoders and Linear Encoders for Numerically Controlled Machine Tools.

Safety-related position measuring systems

The term **functional safety** designates HEIDENHAIN encoders that can be used in safety-related applications. These encoders operate as single-encoder systems with purely serial data transmission via EnDat 2.2 or DRIVE-CLiQ. Reliable transmission of the position is based on two independently generated absolute position values and on error bits, which are then provided to the safe control.

Basic principle

HEIDENHAIN measuring systems for safety-related applications are tested for compliance with EN ISO 13849-1 (successor to EN 954-1) as well as EN 61508 and EN 61800-5-2. These standards describe the assessment of safety-oriented systems, for example based on the failure probabilities of integrated components and subsystems. This modular approach helps manufacturers of safety-oriented systems to implement their complete systems, because they can begin with subsystems that have already been qualified. Safetyrelated position measuring systems with purely serial data transmission via EnDat 2.2 or DRIVE-CLiQ accommodate this technique. In a safe drive, the safety-related position measuring system is such a subsystem.

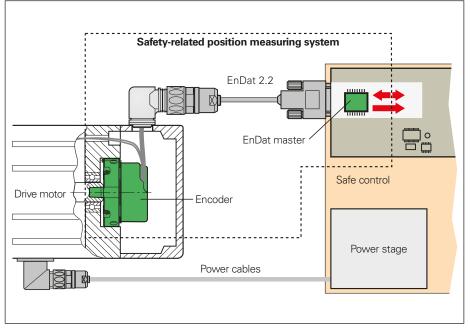
The **safety-related position measuring system**, e.g. with EnDat 2.2, consists of:

- Encoder with EnDat 2.2 transmission component
- Data transfer line with EnDat 2.2 communication and HEIDENHAIN cable
- EnDat 2.2 receiver component with monitoring function (EnDat master)

In practice, the **complete "safe servo drive" system**, e.g. for EnDat 2.2 consists of:

- Safety-related position measuring system
- Safety-related control (including EnDat master with monitoring functions)
- Power stage with motor power cable and drive
- Mechanical connection between encoder and drive (e.g. rotor/stator coupling)

Field of application


Safety-related position measuring systems from HEIDENHAIN are designed so that they can be used as single-encoder systems in applications with control category SIL 2 (according to EN 61 508), performance level "d", category 3 (according to EN ISO 13 849).

Additional measures in the control make it possible to use certain encoders for applications up to SIL 3, PL "e", category 4. The suitability of these encoders is indicated appropriately in the documentation (brochures/product information documents).

The functions of the safety-related position measuring system can be used for the following safety tasks in the complete system (also see EN 61 800-5-2):

SS1	Safe Stop 1	Safe stop 1			
SS2	Safe Stop 2	Safe stop 2			
sos	Safe Operating Stop	Safe operating stop			
SLA	Safely Limited Acceleration	Safely limited acceleration			
SAR	Safe Acceleration Range	Safe acceleration range			
SLS	Safely Limited Speed	Safely limited speed			
SSR	Safe Speed Range	Safe speed range			
SLP	Safely Limited Position	Safely limited position			
SLI	Safely Limited Increment	Safely limited increment			
SDI	Safe Direction	Safe direction			
SSM	Safe Speed Monitor	Safe report of the limited speed			

Safety functions according to EN 61800-5-2

Complete safe-servo-drive system with EnDat 2.2

Function

The safety strategy of the position measuring system is based on two mutually independent position values and additional error bits produced in the encoder and, e.g. for EnDat 2.2, transmitted over the EnDat 2.2 protocol to the EnDat master. The EnDat master assumes various monitoring functions with which errors in the encoder and during transmission can be revealed. For example. the two position values are then compared. The EnDat master then makes the data available to the safe control. The control periodically tests the safety-related position measuring system to monitor its correct operation.

The architecture of the EnDat 2.2 protocol makes it possible to process all safety-relevant information and control mechanisms during unconstrained controller operation. This is possible because the safety-relevant information is saved in the additional information. According to EN 61508, the architecture of the position measuring system is regarded as a single-channel tested system.

Documentation on the integration of the position measuring system

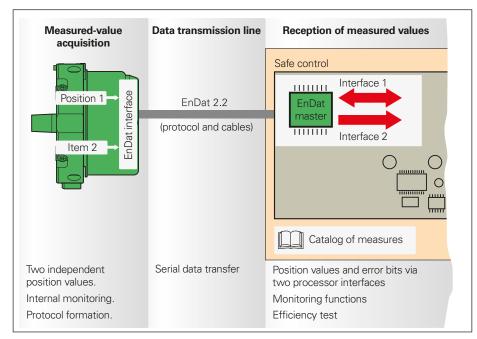
The intended use of position measuring systems places demands on the control, the machine designer, the installation technician, service, etc. The necessary information is provided in the documentation for the position measuring systems.

In order to be able to implement a position measuring system in a safety-related application, a suitable control is required. The control assumes the fundamental task of communicating with the encoder and safely evaluating the encoder data.

The requirements for integrating the EnDat master with monitoring functions into the safe control are described in the HEIDEN-HAIN document 533095. It contains, for example, specifications on the evaluation and processing of position values and error bits, and on electrical connection and cyclic tests of position measuring systems.

Document 1000344 describes additional measures that make it possible to use suitable encoders for applications up to SIL 3, PL "e," category 4.

Machine and plant manufacturers need not attend to these details. These functions must be provided by the control. Product information sheets, brochures and mounting instructions provide information to aid the selection of a suitable encoder. The **product information sheets** and **brochure** contain general data on function and application of the encoders as well as specifications and permissible ambient conditions. The **mounting instructions** provide detailed information on installing the encoders.


The architecture of the safety system and the diagnostic possibilities of the control may call for further requirements. For example, the operating instructions of the control must explicitly state whether fault exclusion is required for the loosening of the mechanical connection between the encoder and the drive. The machine designer is obliged to inform the installation technician and service technicians, for example, of the resulting requirements.

Fault exclusion for the loosening of the mechanical connection

Regardless of the interface, many safety designs require a safe mechanical connection. The standard for electrical drives, EN 61 800-5-2, defines the loss or loosening of the mechanical connection between the encoder and drive as a fault that requires consideration. Since it cannot be guaranteed that the control will detect such errors, in many cases the possibility of a fault must be eliminated.

Standard encoders

In addition to the encoders explicitly qualified for safety applications, standard linear encoders , e.g. with 1 V_{PP} signals, can also be used in safe applications. In these cases, the properties of the encoders are to be aligned with the requirements of the respective control. HEIDENHAIN can provide additional data on the individual encoders (failure rate, fault model as per EN 61 800-5-2).

For more information:

For more information on the topic of functional safety, refer to the technical information documents *Safety-Related Position Measuring Systems* and *Safety-Related Control Technology* as well as the product information document of the functional safety encoders and in the customer information documents on fault exclusion.

Measuring principles

Measuring standard

HEIDENHAIN encoders with optical scanning incorporate measuring standards of periodic structures known as graduations.

These graduations are applied to a carrier substrate of glass or steel. The scale substrate for large diameters is a steel tape.

HEIDENHAIN manufactures the precision graduations in specially developed, photolithographic processes.

- AURODUR: matte-etched lines on goldplated steel tape with typical graduation period of 40 µm
- METALLUR: contamination-tolerant graduation of metal lines on gold, with typical graduation period of 20 µm
- DIADUR: extremely robust chromium lines on glass (typical graduation period of 20 µm) or three-dimensional chromium structures (typical graduation period of 8 µm) on glass
- SUPRADUR phase grating: optically three dimensional, planar structure; particularly tolerant to contamination; typical graduation period of 8 µm and finer
- OPTODUR phase grating: optically three dimensional, planar structure with particularly high reflectance, typical graduation period of 2 µm and less

Magnetic encoders use a graduation carrier of magnetizable steel alloy. A graduation consisting of north poles and south poles is formed with a grating period of 400 μ m. Due to the short distance of effect of electromagnetic interaction, and the very narrow scanning gaps required, finer magnetic graduations are not practical.

Encoders using the inductive scanning principle work with graduation structures of copper and nickel. The graduation is applied to a carrier material for printed circuits.

With the **absolute measuring method**, the position value is available from the encoder immediately upon switch-on and can be called at any time by the subsequent electronics. There is no need to move the axes to find the reference position. The absolute position information is read from the **grating on the circular scale**, which is designed as a serial code structure or consists of several parallel graduation tracks.

A separate incremental track or the track with the finest grating period is interpolated for the position value and at the same time is used to generate an optional incremental signal.

Singleturn rotary encoders repeat the absolute position information with each revolution. **Multiturn encoders** can also distinguish between revolutions.

Circular graduations of absolute rotary encoders

With the **incremental measuring method**, the graduation consists of a periodic grating structure. The position information is obtained **by counting** the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, the circular scales are provided with an additional track that bears a **reference mark**.

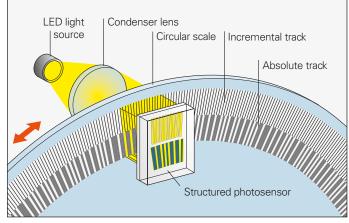
The absolute position established by the reference mark is gated with exactly one measuring step.

The reference mark must therefore be scanned to establish an absolute reference or to find the last selected datum.

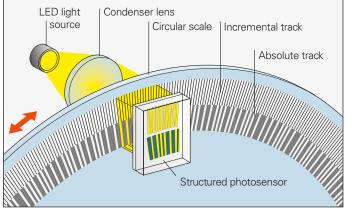
Circular graduations of incremental rotary encoders

Scanning methods

Photoelectric scanning principle

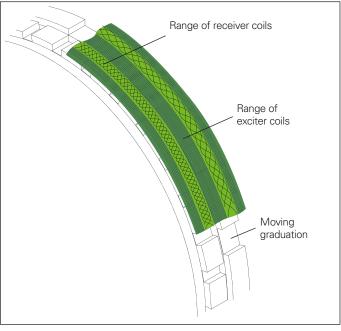

Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of a measuring standard is contact-free, and as such, free of wear. This method detects even very fine lines, no more than a few micrometers wide, and generates output signals with very small signal periods.

The ERN/ECN/EQN/ERO and ROD/RCN/ RQN rotary encoders use the imaging scanning principle.


Put simply, the imaging scanning principle functions by means of projected-light signal generation: two graduations with equal or similar grating periods are moved relative to each other—the scale and the scanning reticle. The carrier material of the scanning reticle is transparent, whereas the graduation on the measuring standard may be applied to a transparent or reflective surface.

When parallel light passes through a grating, light and dark surfaces are projected at a certain distance. An index grating with the same or similar grating period is located here. When the two graduations move in relation to each other, the incident light is modulated: if the gaps are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through. A structured photosensor or photovoltaic cells convert these variations in light intensity into nearly sinusoidal electrical signals. Practical mounting tolerances for encoders with the imaging scanning principle are achieved with grating periods of 10 µm and larger.

The ECN and EQN absolute rotary encoders with optimized scanning have a single large photosensor instead of a group of individual photoelements. Its structures have the same width as that of the measuring standard. This makes it possible to do without the scanning reticle with matching structure.


Photoelectric scanning according to the imaging scanning principle

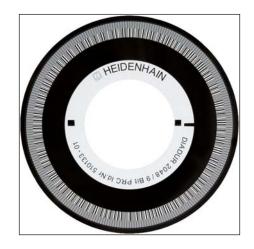
Other scanning principles

Some encoders function according to other scanning methods. ERM encoders use a permanently magnetized MAGNODUR graduation that is scanned with magnetoresistive sensors.

ECI/EQI/EBI and RIC/RIQ rotary encoders operate according to the inductive measuring principle. Here, moving graduation structures modulate a high-frequency signal in its amplitude and phase. The position value is always formed by sampling the signals of all receiver coils distributed evenly around the circumference. This permits large installation tolerances at high resolution.

Inductive scanning

Electronic commutation with position encoders


Commutation in permanent-magnet three-phase motors

Before a permanent-magnet three-phase AC drive starts, the rotor position must be available as an absolute value for electronic commutation. HEIDENHAIN rotary encoders are available with different types of rotor position recognition:

- Absolute rotary encoders in singleturn and multiturn versions provide the absolute position information immediately after switch-on. This makes it immediately possible to derive the exact position of the rotor and use it for electronic commutation.
- · Incremental rotary encoders with a second track—the Z1 track—provide one sine and one cosine signal (C and D) for each motor shaft revolution in addition to the incremental signals. For sine commutation, rotary encoders with a Z1 track need only a subdivision unit and a signal multiplexer to provide both the absolute rotor position from the Z1 track with an accuracy of ±5° and the position information for speed and position control from the incremental track (see also Interfaces—Commutation signals).
- Incremental rotary encoders with block commutation tracks also output three commutation signals U, V and W, which are used to drive the power electronics directly. These encoders are available with various commutation tracks. Typical versions have three signal periods (120° mech.) or four signal periods (90° mech.) per commutation signal and revolution. Irrespective of this, the incremental square-wave signals are used for position and speed control (see also Interfaces - Commutation Signals).

Commutation of synchronous linear motors

Like absolute rotary and angular encoders. absolute linear encoders of the LIC and LC series provide the exact position of the moving motor part immediately after switch-on. This makes it possible to start with maximum holding load on vertical axes even at a standstill.

Circular scale with serial code track and incremental track

Circular scale with Z1 track

Circular scale with block commutation tracks

(For more information:

Keep in mind the switch-on behavior of the encoders (see the Interfaces of HEIDENHAIN Encoders brochure.

Measuring accuracy

The quantities influencing the accuracy of **linear encoders** are listed in the *Linear Encoders for Numerically Controlled Machine Tools* and *Exposed Linear Encoders* brochures.

The **accuracy of angular measurement** is mainly determined by

- the quality of the graduation,
- the quality of the scanning process
- the quality of the signal processing electronics,
- the eccentricity of the graduation to the bearing,
- the error of the bearing,
- the coupling to the measured shaft, and
- the elasticity of the stator coupling (ERN, ECN, EQN) or shaft coupling (ROD, ROC, ROQ, RIC, RIQ)

These factors of influence are comprised of encoder-specific error and application-dependent issues. All individual factors of influence must be considered in order to assess the attainable **overall accuracy**.

Error specific to the measuring device

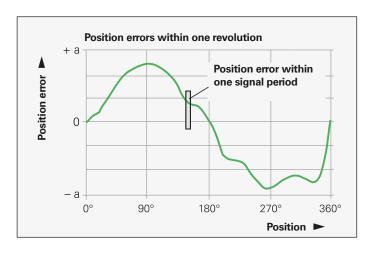
The error that is specific to the measuring device is shown for rotary encoders in the specifications as the **system accuracy**.

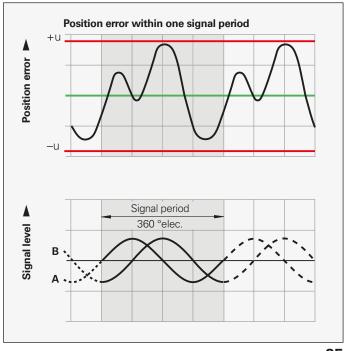
The extreme values of the total deviations of a position are—referenced to their mean value—within the system accuracy ±a.

The system accuracy reflects position errors within one revolution as well as those within one signal period and—for rotary encoders with stator coupling—the errors of the shaft coupling.

Position error within one signal period

Position errors within one signal period are considered separately, since they already have an effect even in very small angular motions and in repeated measurements. They especially lead to speed ripples in the speed control loop.


The position error within one signal period ±u results from the quality of the scanning and—for encoders with integrated pulse-shaping or counter electronics—the quality of the signal-processing electronics. For encoders with sinusoidal output signals, however, the errors of the signal processing electronics are determined by the subsequent electronics.


The following individual factors influence the result:

- The size of the signal period
- The homogeneity and period definition of the graduation
- The quality of scanning filter structures
- The characteristics of the sensors
- The stability and dynamics of further processing of the analog signals

These errors are considered when specifying the position error within one signal period. For rotary encoders with integral bearing and sinusoidal output signals it is better than ±1 % of the signal period or better than ±3 % for encoders with square-wave output signals. These signals are suitable for up to 100-fold PLL subdivision.

As the result of increased reproducibility of a position, much smaller measuring steps are still useful.

Application-dependent error

For rotary encoders with integral bearing, the specified system accuracy already includes the error of the bearing. For angle encoders with separate **shaft coupling** (ROD, ROC, ROQ, RIC, RIQ), the angle error of the coupling must be added (see *Mechanical design types and mounting*). For angle encoders with **stator coupling** (ERN, ECN, EQN), the system accuracy already includes the error of the shaft coupling.

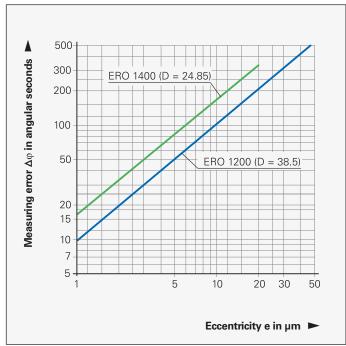
In contrast, for **encoders without integral bearing**, the mounting, as well as the adjustment of the scanning head, has a decisive influence on the attainable overall accuracy. Of particular importance are the mounting eccentricity of the graduation and the radial runout of the measured shaft. The application-dependent error values for these encoders must be measured and considered individually in order to evaluate the **overall accuracy**.

Rotary encoders with photoelectric scanning

In addition to the system accuracy, the mounting and adjustment of the scanning head normally have a significant effect on the accuracy that can be achieved by rotary encoders without integral bearings with photoelectric scanning. Of particular importance are the mounting eccentricity of the graduation and the radial runout of the measured shaft.

Example

ERO 1420 rotary encoder with a mean graduation diameter of 24.85 mm: A radial runout of the measured shaft of 0.02 mm results in a position error within one revolution of \pm 330 angular seconds.


To evaluate the accuracy of modular rotary encoders without integral bearing (ERO), each of the significant errors must be considered individually.

1. Directional deviations of the graduation ERO: The extreme values of the directional deviation with respect to their mean value are shown in the *Specifications* as the graduation accuracy for each model. The graduation accuracy and the position error within a signal period comprise the system accuracy.

2. Errors due to eccentricity of the graduation to the bearing

Under normal circumstances, the bearing will have a certain amount of radial deviation or geometric error after the disk/hub assembly is mounted. When centering using the centering collar of the hub, please note that, for the encoders listed in this brochure, HEIDENHAIN guarantees an eccentricity of the graduation to the centering collar of under 5 µm. For the modular rotary encoders, this accuracy value presupposes a diameter deviation of zero between the drive shaft and the "master shaft."

If the centering collar is centered on the bearing, then in a worst-case situation both eccentricity vectors could be added together.

Resultant measurement error Δφ for various eccentricity values e as a function of graduation diameter D

The following relationship exists between the eccentricity e, the mean graduation diameter D and the measuring error $\Delta \phi$ (see illustration below):

$$\Delta \varphi = \pm 412 \times \frac{e}{D}$$

 $\Delta \phi$ = Measurement error in " (angular seconds)

e = Eccentricity of the radial grating to the bearing in µm

D = Mean graduation diameter in mm

Model	Mean graduation diameter D	Error per 1 µm of eccentricity
ERO 1420 ERO 1470 ERO 1480	D = 24.85 mm	±16.5"
ERO 1225 ERO 1285	D = 38.5 mm	±10.7"

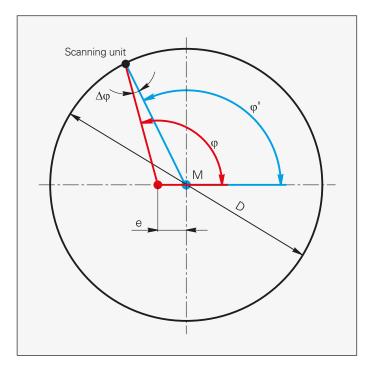
3. Error due to radial runout of the bearing

The equation for the measuring error $\Delta \phi$ is also valid for radial error of the bearing if the value e is replaced with the eccentricity value, i.e. half of the radial error (half of the displayed value). Bearing compliance to radial shaft loading causes similar errors.

4. Position error within one signal period $\Delta \phi_{tt}$

The scanning units of all HEIDENHAIN encoders are adjusted so that without any further electrical adjustment being necessary while mounting, the maximum position error values within one signal period will not exceed the values listed below.

Model	Line count	Position error within one signal period Δφ	
		TTL	1 V _{PP}
ERO	2048 1500 1024 1000 512	$\leq \pm 19.0$ " $\leq \pm 26.0$ " $\leq \pm 38.0$ " $\leq \pm 40.0$ " $\leq \pm 76.0$ "	$\leq \pm 6.5$ " $\leq \pm 8.7$ " $\leq \pm 13.0$ " $\leq \pm 14.0$ " $\leq \pm 25.0$ "


The values for the position errors within one signal period are already included in the system accuracy. Larger errors can occur if the mounting tolerances are exceeded.

Rotary encoders with inductive scanning

As with all rotary encoders without integral bearing, the attainable accuracy for those with inductive scanning depends on the mounting and application conditions. The system accuracy is given for 20 °C and low speed. The exploitation of all permissible tolerances for operating temperature, shaft speed, supply voltage, scanning gap and mounting are to be calculated for the typical total error.

Thanks to the circumferential scanning of the inductive rotary encoders, the total error is less than for rotary encoders without integral bearing but with optical scanning. Because the total error cannot be calculated through a simple calculation rule, the values are provided in the following table.

Model	System accuracy	Total deviation
ECI 1100 EBI 1100 EQI 1100 EnDat22	±120"	±280"
ECI 1300 EQI 1300 EnDat22	±65"	±120"
ECI 1300 EQI 1300 EnDat01	±180"	±280"
ECI 100 EBI 100	±90"	±180"
ECI 4000 EBI 4000 90 mm HW EnDat22	±25"	±140"
ECI 4000 EBI 4000 180 mm HW EnDat22	±40"	±150"

Measuring error $\Delta \phi$ as a function of the mean graduation diameter D and the eccentricity e

M Center of graduation φ "True" angle φ' Scanned angle

Mechanical design types and mounting

Rotary encoders with integral bearing and stator coupling

ECN/EQN/ERN rotary encoders have integrated bearings and a mounted stator coupling. The encoder shaft is directly connected with the shaft to be measured. During angular acceleration of the shaft, the stator coupling must absorb only that torque resulting from friction in the bearing. ECN/EQN/ERN rotary encoders therefore provide excellent dynamic performance and a high natural frequency.

Benefits of the stator coupling:

- No axial mounting tolerances between shaft and stator housing for ExN 1300
- High natural frequency of the coupling
- High torsional rigidity of shaft coupling
- Low mounting or installation space requirement
- Simple axial mounting

Mounting the ECN/EQN 1100 and ECN/EQN/ERN 1300

The blind hollow shaft or the taper shaft of the encoder is connected at its end through a central screw with the measured shaft. The encoder is centered on the motor shaft by the hollow shaft or taper shaft. The stator of the ECN/EQN 1100 is connected without a centering collar to a flat surface with two clamping screws. The stator of the ECN/EQN/ERN 1300 is screwed into a mating hole by an axially tightened screw.

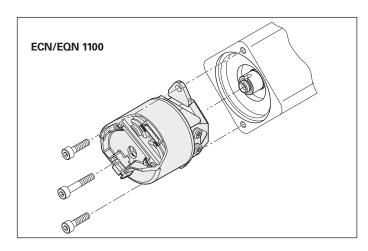
Mounting accessories

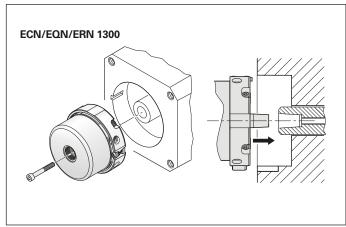
ECN 1100: mounting aid

For disengaging the PCB connector, see page 44

ECN/EQN/ECI/EQI 1100: mounting aid

For turning the encoder shaft from the rear side. For turning the encoder shaft from the rear so that the positive-locking connection between the encoder and measured shaft can be found.


ID 821017-03

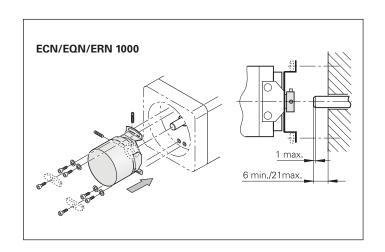

ERN/ECN/EQN 1300: inspection tool

For inspecting the shaft connection (fault exclusion for rotor coupling) ID 680644-01

HEIDENHAIN recommends inspecting the holding torque of non-positive shaft connections (e.g. tapered shafts, blind hollow shafts).

The inspection tool is screwed into the M10 back-off thread on the rear of the encoder. Due to the low screwing depth it does not touch the shaft-fastening screw. When the motor shaft is locked, the testing torque is applied to the extension by a torque wrench (hexagonal, 6.3 mm width across flats). After any nonrecurring settling, there must not be any relative motion between the motor shaft and encoder shaft

Mounting the ECN/EQN/ERN 1000 and ERN 1x23


The rotary encoder is slid by its hollow shaft onto the measured shaft and fastened by two screws. The stator is mounted without a centering flange to a flat surface with four cap screws or with two cap screws and special washers.

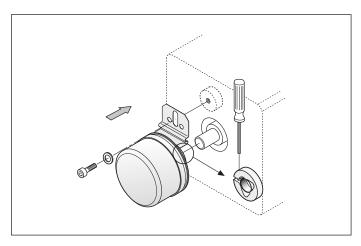
The ECN/EQN/ERN 1000 encoders feature a blind hollow shaft; the ERN 1123 features a hollow through shaft.

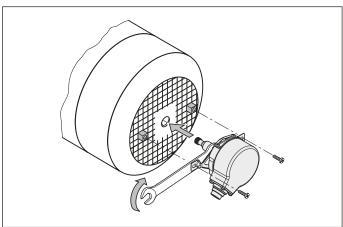
Accessory for ECN/EQN/ERN 1000

Washer

For increasing the natural frequency f_N when mounting with only two screws. ID 334653-01 (2 pieces)

Mounting the EQN/ERN 400


The EQN/ERN 400 encoders are designed for use on Siemens asynchronous motors. They serve as replacement for existing Siemens rotary encoders.

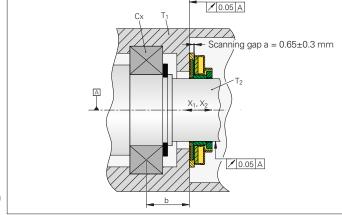

The rotary encoder is slid by its hollow shaft onto the measured shaft and fastened by the clamping ring. On the stator side, the encoder is fixed by its torque support to a plane surface.

Mounting the EQN/ERN 401

The ERN 401 encoders are designed for use on Siemens asynchronous motors. They serve as replacement for existing Siemens rotary encoders.

The rotary encoder features a solid shaft with an M8 external thread, centering taper and SW8 width across flats. It centers itself during fastening to the motor shaft. The stator coupling is fastened by special clips to the motor's ventilation grille.

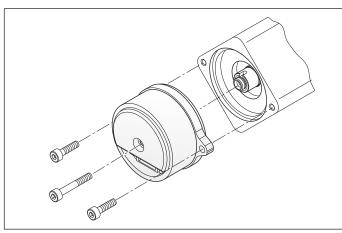
Rotary encoders without integral bearing - ECI/EBI/EQI


The **ECI/EBI/EQI** inductive encoders have no integral bearings. This means that mounting and operating conditions influence the functional reserves of the encoder. It is essential to ensure that the specified mating dimensions and tolerances (see Mounting Instructions) are maintained in all operating conditions.

The application analysis must result in values within specification for all possible operating conditions (particularly under maximum load and at minimum and maximum operating temperature) and under consideration of the signal amplitude (inspection of scanning gap and mounting tolerance at room temperature). This applies particularly for the measured

- maximum radial runout of the motor shaft
- maximum axial runout of the motor shaft with respect to the mounting surface
- maximum and minimum scanning gap (a), also in combination with e.g.:
 - the length relation between motor shaft and motor housing under the influence of temperature (T₁; T₂; α1; α2) depending on the position of the fixed bearing (b)
 - the bearing play (C_X)
 - nondynamic shaft offsets due to load (X₁)
 - the effect of engaging motor brakes (X₂)

The **ECI/EBI 100** rotary encoders are prealigned on a flat surface and then the locked hollow shaft is slid onto the measured shaft. The encoder is fastened and the shaft clamped by axial screws.


The **ECI/EBI/EQI 1100** inductive rotary encoders are mounted as far as possible in axial direction. The blind hollow shaft is attached with a central screw. The stator of the encoder is clamped against a shoulder by two axial screws.

Schematic representation of **ECI/EBI 100**

Mounting the ECI 119

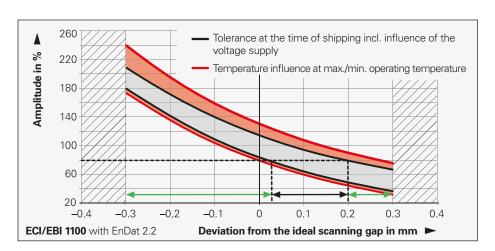
Mounting the **ECI/EQI 1100**

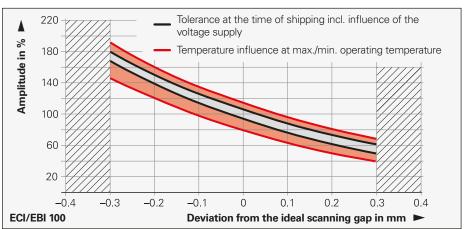
Mounting accessory Mounting aid for removing the PCB connector, see page 44.

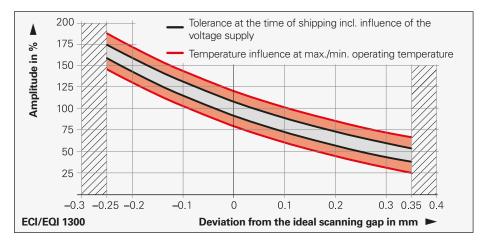
Permissible scanning gap

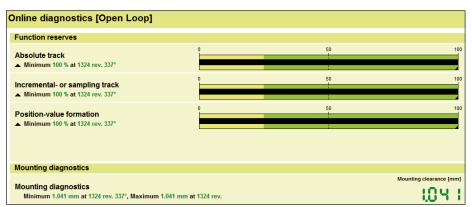
The scanning gap between the rotor and stator is predetermined by the mounting situation. Later adjustment is possible only by inserting shim rings.

The maximum permitted deviation indicated in the mating dimensions applies to mounting as well as to operation. Tolerances used during mounting are therefore not available for axial motion of the shaft during operation.

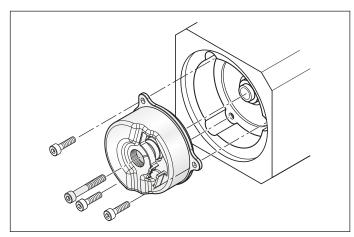

Once the encoder has been mounted, the actual scanning gap between the rotor and stator can be measured indirectly via the signal amplitude in the rotary encoder, using the PWM 21 adjusting and testing package. The characteristic curves show the correlation between the signal amplitude and the deviation from the ideal scanning gap, depending on various ambient conditions.


The example for the ECI/EBI 1100 shows the resulting deviation from the ideal scanning gap for a signal amplitude of 80 % at ideal conditions. Due to tolerances within the rotary encoder, the deviation is between +0.03 mm and +0.2 mm. This means that the maximum permissible motion of the drive shaft during operation is between -0.33 mm and +0.1 mm (green arrows).

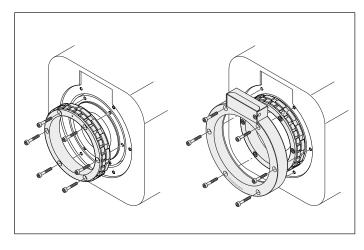

Display of scale-to-reticle gap


The latest-generation encoders support the display of the mounting dimension in the ATS software. This additional information can also be called up during control operation by the inverter.

ID	Exl mounting wizard	Mounting Interface
728563-xx	>	
820725-xx	>	
826930-xx		V
826980-xx		V
811811-xx	V	
811815-xx	>	
810661-xx		~
810662-xx		~
823406-xx	V	
823407-xx	/	
823405-xx	~	



The **ECI/EQI 1300** inductive rotary encoders with EnDat01 are mechanically compatible with the ExN 1300 photoelectric encoders. The taper shaft (a bottomed hollow shaft is available as an alternative) is fastened with a central screw. The stator of the encoder is clamped by an axially tightened bolt in the location hole. The scanning gap between rotor and stator must be set during mounting.


Mounting the **ECI/EQI 1300** EnDat01

The **ECI/EQI 1300** inductive rotary encoders with EnDat22 are mounted as far as possible in axial direction. The blind hollow shaft is attached with a central screw. The stator of the encoder is clamped against a shoulder by three axial screws.

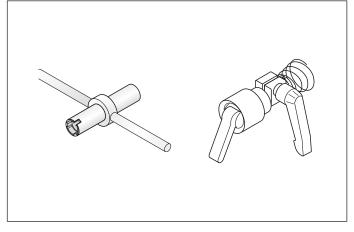
Mounting the **ECI/EQI 1300** EnDat22

The scale drum of the **ECI/EBI 4000** inductive rotary encoder is pushed onto the centering collar of the measured shaft and fastened (with/without machine key, depending on the version). Then the stator is fastened by an external centering collar.

Mounting the **ECI/EBI 4000**

Mounting accessories for ECI/EQI 1300 EnDat01

Adjustment aid for setting the gap ID 335529-xx

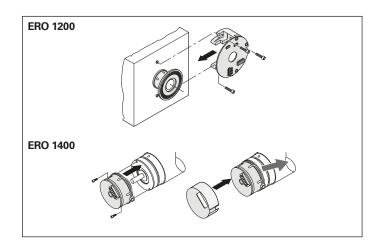

Mounting aid for adjusting the rotor position to the motor EMF ID 352481-02

Accessory for ECI/EQI

For inspecting the scanning gap and adjusting the ECI/EQI 1300

Mounting aid for removing the PCB connector, see page 44.

Mounting and adjusting aid for **ECI/EQI 1300** EnDat01


Rotary encoders without integral bearing - ERO

The **ERO** rotary encoders without integral bearing consist of a scanning head and a graduated disk, which must be adjusted to each other very exactly. A precise adjustment is an important factor for the attainable measuring accuracy.

The **ERO** modular rotary encoders consist of a graduated disk with hub and a scanning unit. They are particularly well suited for applications with limited installation space and negligible axial and radial runout, or for applications where friction of any type must be avoided.

In the **ERO 1200** series, the disk/hub assembly is slid onto the shaft and adjusted to the scanning unit. The scanning unit is aligned on a centering collar and fastened on the mounting surface.

The **ERO 1400** series consists of miniature modular encoders. These rotary encoders have a special built-in **mounting aid** that centers the graduated disk to the scanning unit and adjusts the gap between the disk and the scanning reticle. This makes it possible to install the encoder in a very short time. The encoder is supplied with a cover cap for protection from extraneous light.

Mounting the **ERO**

Mounting accessory for ERO 1400

Mounting accessory

Aid for removing the clip for optimal encoder mounting. ID 510175-01

Accessory

Housing for ERO 14xx with axial PCB connector and central hole ID 331727-23

Mounting accessories for **ERO 1400**

Information on output cables

Mounting and initial operation is permissible only with appropriate ESD protection. Do not engage or disengage any connections while under power. To avoid overstressing the individual wires when disengaging a connector, HEIDEN-HAIN recommends using the mounting aid to pull the PCB connector.

Accessory

Mounting aid for disengaging the PCB connector. Suitable for all rotary encoders in this brochure, except for the ERO 1200 series

ID 1075573-01

To avoid damage to the cable, the pulling force must be applied only to the connector, and not to the wires. For other encoders, use tweezers or the mounting aid if necessary.

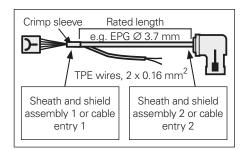
For output cables with standard M12 or M23 flange sockets, M2.5 screws are to be used

The M2.5 screws are to be fastened with the following torques:

 $\begin{array}{ccccc} For \, M12, \, M23 & M_d \, min. & 0.4 \, Nm \\ & M_d \, max. & 0.5 \, Nm \end{array}$

Load-bearing thread length min. 4 mm Minimum tensile strength

Minimum tensile strength of screws 800 N/mm²


To prevent the screws from spontaneously loosening, HEIDENHAIN recommends using a materially bonding threadlocker.

Mounting aid for PCB connector

Cable length (rated length)

For output cables with crimping on the encoder side for strain relief and shield contact, the cable length up to the crimp sleeve is indicated.

For standard output cables, the rated wire length for temperature sensors is the same as the rated cable length.

Exceptions include output cables without crimping on the encoder side or with shield connection clamp. You can receive authorized information (dimension drawing) on request by providing the proper output cable ID number (see *Cable list*).

Electromagnetic compatibility

Cables from HEIDENHAIN are tested for electromagnetic compatibility. For output cables with wires for temperature sensors, CE conformity must be demonstrated in the overall system.

Crimp connector

For crimping the wires of the output cable for the temperature sensor with the wires of the temperature sensor in the motor. ID 1148157-01

You will find information on the appropriate crimping tools in the Product Information document for the *HMC 6*.

Strain relief

Avoid torque or tensile stress, use strain relief if necessary.

M12 flange socket, radial

Retention force of polarizing key: max. 1 Nm

Accessories

Mounting aid for disengaging the PCB connector. Suitable for all rotary encoders for servo motors, except the ERO 1200 **series.** ID 1075573-01

To avoid damage to the cable, the pulling force must be applied only to the connector, and not to the wires.

General testing accessories for modular encoders and PWM 21

Testing cable for modular rotary encoders with EnDat22, EnDat01 and SSI interface

Includes three 12-pin adapter connectors and three 15-pin adapter connectors ID 621742-01

Adapter connectors

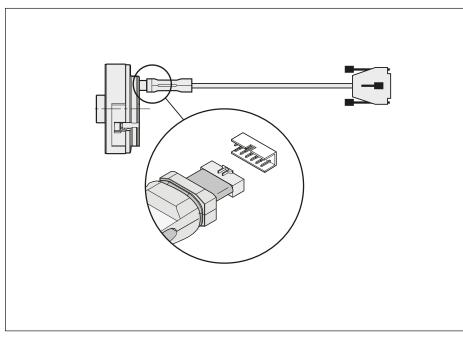
Three connectors for replacement

12-pin: ID 528694-01 15-pin: ID 528694-02

Connecting cables

For extending the testing cable.
Complete with D-sub connector (male) and D-sub connector (female), both 15-pin (max. 3 m)
ID 1080091-xx

Testing cable for ERN 138xx with commutation signals for sinusoidal commutation


Includes three 14-pin adapter connectors ID 1118892-02

Adapter connectors

Three connectors for replacement 14-pin: ID 528694-04

Connecting cables

For extending the testing cable. Complete with D-sub connector (male) and D-sub connector (female), both 15-pin (max. 3 m) ID 675582-xx

Testing cables for modular rotary encoders

Adapter cable for connecting the flange socket with the motor with the PWM 21

EnDat22 interface Adapter cable Ø 6 mm

M23 connector (female), 9-pin M12 coupling (male), 8-pin ID 1136863-xx (In addition, ID 524599-xx M12 (female) to D-sub connector (male), 15-pin needed

Adapter cable Ø 6 mm/8 mm

M12 connector (female), 8-pin D-sub connector (male) 15-pin ID 1036526-xx Ø 6 mm ID 1129753-xx Ø 8 mm

DRIVE-CLiQ interface Adapter cable Ø 6.8 mm

M23 connector (female), 9-pin Ethernet connector (RJ45) with metal housing IP20, 6-pin ID 1117540-xx

Adapter cable Ø 6.8 mm

M12 connector (female), 8-pin Ethernet connector (RJ45) with metal housing IP20, 6-pin ID 1093042-xx

EnDat01, EnDat Hx, EnDatTx or SSI interface with incremental signals Adapter cable Ø 8 mm

M23 connector (female), 17-pin D-sub connector (male) 15-pin ID 324544-xx

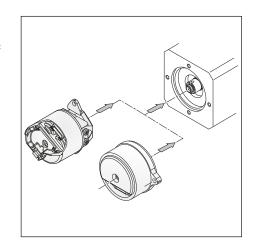
Adapter cable Ø 8 mm

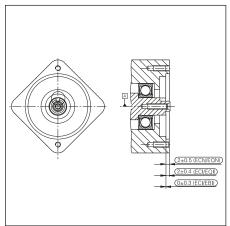
M23 connector (female), 12-pin D-sub connector (male) 15-pin ID 310196-xx

Version for HMC 6 Adapter cable Ø 13.6 mm

M23 SpeedTEC hybrid connector (female), five power wires, two brake wires, six communication wires
D-sub connector (male) 15-pin
ID 1189174-xx

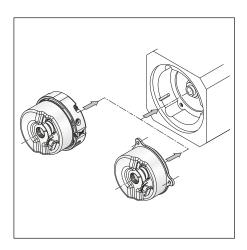
DRIVE-CLiQ is a registered trademark of SIEMENS AG.


SpeedTEC is a registered trademark of TE Connectivity Industrial GmbH.


Mating dimensions in common

Mating dimensions and tolerances must be taken into account when mounting rotary encoders. The mating dimensions of some rotary encoders of a series may differ only slightly or may even be identical. As a result, certain rotary encoders are compatible in their mounting dimensions, and can thus be mounted to identical dimensions, depending on the respective requirements.

All dimensions, tolerances, and required mating dimensions are indicated on the dimension drawing of the respective series. Other values for rotary encoders with functional safety (FS) are provided in the corresponding product information documents.


All absolute rotary encoders of the 1100 series are mounting-compatible within the series. There are only slight differences in the respectively permissible deviation between the shaft and coupling surfaces.

Series	Differences
ECN/EQN 1100 FS	Standard, with slot for FS devices
ECI/EQI 1100 FS	Same as ECN/EQN 1100 FS, but with another tolerance for the deviation between the shaft and coupling surfaces
ECI/EBI 1100	Same as ECN/EQN 1100 FS, but with another tolerance for the deviation between the shaft and coupling surfaces

Some rotary encoders of the 1300 and ECN/EQN 400 series are mounting-compatible, and can therefore be mounted to identical dimensions. Slight differences, such as the anti-rotation element and the limited tolerance band of the inside diameter, must be taken into account.

Series	Required mating dimensions				
	ERN 1300	ECN/EQN 1300 FS	ECI/EQI 1300	ECI/EQI 1300 FS	ECN/EQN 400 FS
ERN 1300		~	~	~	~
ECN/EQN 1300 FS				~	~
ECI/EQI 1300	~	~			~
ECI/EQI 1300 FS					
ECN/EQN 400 FS		~		~	

Series	Differences
ERN 1300	Standard, usable for taper shaft
ECN/EQN 1300	Same as ERN 1300, with additional ridge as anti-rotation element (stator coupling)
ECI/EQI 1300	Same as ERN 1300, with tolerance for the 65 mm inside diameter limited to 0.02 mm, and available as additional variant for hollow shaft
ECI/EQI 1300 FS	Same as ERN 1300, with anti-rotation element (flange)
ECN/EQN 400	Same as ECN/EQN 1300

Mounting accessories

Screwdriver bit

- For HEIDENHAIN shaft couplings
- For ExN shaft clamps and stator couplings
- For ERO shaft clamps

Width across flats	Length	ID
1.5	70 mm	350378-01
1.5 (spherical head)		350378-02
2		350378-03
2 (spherical head)		350378-04
2.5		350378-05
3 (spherical head)		350378-08
4		350378-07
4 (with dog point) ¹⁾		350378-14
J. C. 1.14,	150 mm	756768-44
TX8	89 mm 152 mm	350378-11 350378-12
TX15	70 mm	756768-42

When using screwdrivers with adjustable torque, ensure that they comply with DIN EN ISO 6789 and therefore fulfill the required tolerances for torque values.

Adjustable torque, accuracy ±6 % 0.2 Nm to 1.2 Nm ID 350379-04 1 Nm to 5 Nm ID 350379-05

¹⁾ For screws as per DIN 6912 (low head screw with pilot recess)

Screws

Screw	Securing method	ID
M3x10 A2 ISO 4762 KLF	Self-locking	202264-31
M3x10 A2 ISO 4762 KLF	Materially bonding anti-rotation lock	202264-87
M3x16 A2 ISO 4762 KLF	Self-locking	202264-30
M3x22 A2 ISO 4762 KLF	Self-locking	202264-44
M3x22 8.8 ISO 4762 MKL	Materially bonding anti-rotation lock	202264-65
M3x25 8.8 ISO 4762 MKL	Materially bonding anti-rotation lock	202264-86
M3x35 A2 ISO 4762 KLF	Self-locking	202264-29
M3x35 8.8 ISO 4762 MKL	Materially bonding anti-rotation lock	202264-66
M4x10 8.8 ISO 4762 MKL	Materially bonding anti-rotation lock	202264-85
M5x30 08.8 DIN 6912 MKL	Materially bonding anti-rotation lock	202264-76
M5x50 08.8 DIN 6912 KLF	Self-locking	202264-36
M5x50 08.8 DIN 6912 MKL	Materially bonding anti-rotation lock	202264-54

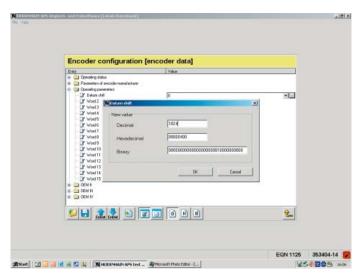
Screwdriver

General information

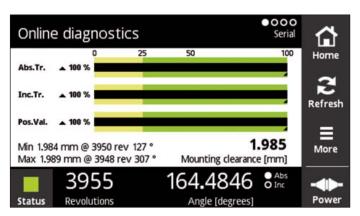
Aligning the rotary encoders to the motor EMF

Synchronous motors require information on the rotor position immediately after switch-on. This information can be provided by rotary encoders with additional commutation signals, which provide relatively rough position information. Also suitable are absolute rotary encoders in multiturn and singleturn versions, which transmit the exact position information within a few angular seconds (see also Electronic commutation with position encoders). When these encoders are mounted, the rotor positions of the encoder must be assigned to those of the motor in order to ensure the most constant possible motor current. Inadequate assignment to the motor EMF will cause loud motor noises and high power loss.

First, the rotor of the motor is brought to a preferred position by the application of a DC current.


Rotary encoders with commutation signals are aligned approximately—for example with the aid of the line markers on the encoder or the reference mark signal—and mounted on the motor shaft. The fine adjustment is quite easy with a PWT 100 phase angle tester (see HEIDENHAIN measuring and testing devices): the stator of the encoder is turned until the PWT 100 shows that the distance from the reference mark is about zero.

Absolute rotary encoders are first mounted as a complete unit. Then the preferred position of the motor is assigned the value zero. The adjusting and testing package (see HEIDENHAIN measuring and testing devices) serves this purpose. It features the complete range of EnDat functions and makes it possible to shift datums, set write-protection against unintentional changes to saved values, and use further inspection functions.


The ECI/EQI encoders with additional 1 V_{PP} signals also permit manual alignment. Please observe the information in the respective mounting instructions.

Motor current of a well adjusted and a very poorly adjusted rotary encoder

Aligning a rotary encoder to the motor EMF with the aid of the adjusting and testing software

PWT 100 online diagnostics

General mechanical information

Certified by NRTL (Nationally Recognized Testing Laboratory)

All rotary encoders in this brochure comply with the UL safety regulations for the USA and the CSA safety regulations for Canada.

Acceleration

Encoders are subject to various types of acceleration during operation and mounting.

Vibration

The encoders are qualified on a test stand to operate with the specified acceleration values at frequencies from 55 Hz to 2000 Hz in accordance with EN 60068-2-6. However, if the application or poor mounting causes long-lasting resonant vibration, it can limit performance or even damage the encoder. **Comprehensive tests of the entire system are therefore required.**

Shock

The encoders are qualified on a test stand for non-repetitive semi-sinusoidal shock to operate with the specified acceleration values and duration in accordance with EN 60068-2-27. This does not include continuous shock loads, which must be tested in the application.

• The **maximum angular acceleration** is in general 10⁵ rad/s². This is the highest permissible acceleration at which the rotor will rotate without damage to the encoder. The actually attainable angular acceleration lies in the same order of magnitude (for deviating values for ECN/ERN 100 see *Specifications*), but it depends on the type of shaft connection. A sufficient safety factor is to be determined through system tests.

Other values for rotary encoders with functional safety are provided in the corresponding product information documents.

Humidity

The maximum permissible relative humidity is 75 %. 93 % is permissible temporarily. Condensation is not permissible.

Magnetic fields

Magnetic fields > 30 mT can impair proper function of encoders. If required, please contact HEIDENHAIN in Traunreut, Germany.

RoHS

HEIDENHAIN has tested the products for safety of the materials as per European Directives "RoHS" and "WEEE." For a Manufacturer's Declaration on RoHS, please refer to your sales agency.

Natural frequencies

The rotor and the couplings of ROC/ROQ/ROD and RIC/RIQ rotary encoders, as also the stator and stator coupling of ECN/EQN/ERN rotary encoders, form a single vibrating spring-mass system.

The natural frequency of the coupling f_N should be as high as possible. A prerequisite for the highest possible natural frequency on ROC/ROQ/ROD/RIC/RIQ rotary encoders is the use of a diaphragm coupling with a high torsional rigidity C (see *Shaft couplings*).

$$f_N = \frac{1}{2 \times \pi} \times \sqrt{\frac{C}{I}}$$

f_N: Natural frequency of coupling in Hz
 C: Torsional rigidity of the coupling in Nm/rad
 I: Moment of inertia of the rotor in kgm²

ECN/EQN/ERN rotary encoders with stator coupling form a vibrating springmass system whose natural frequency of the coupling f_N should be as high as possible. The typical natural frequencies of the stator coupling when mounted can varied in different encoder variants (for example single-turn or multi-turn design), manufacturing tolerances and different mounting conditions. If radial and/or axial acceleration forces are added, the rigidity of the encoder bearing and the encoder stator is also significant. If such loads occur in your application, HEIDENHAIN recommends consulting with the main facility in Traunreut.

Protection against contact (EN 60529)

After encoder installation, all rotating parts must be protected against accidental contact during operation.

Protection (EN 60529)

The ingress of contamination can impair proper function of the encoder. Unless otherwise indicated, all rotary encoders meet protection standard IP64 (ExN/ROx 400: IP67) according to EN 60 529. This includes housings, cable outlets and flange sockets when the connector is fastened.

The **shaft inlet** provides protection to IP64. Splash water should not contain any substances that would have harmful effects on the encoder's parts. If the protection of the shaft inlet is not sufficient (such as when the encoders are mounted vertically), additional labyrinth seals should be provided. Many encoders are also available with protection to class IP66 for the shaft inlet. The sealing rings used to seal the shaft are subject to wear due to friction, the amount of which depends on the specific application.

Noise emission

Running noise can occur during operation, particularly when encoders with integral bearing or multiturn rotary encoders (with gears) are used. The intensity may vary depending on the mounting situation and the speed.

System tests

Encoders from HEIDENHAIN are usually integrated as components in larger systems. Such applications require comprehensive tests of the entire system regardless of the specifications of the encoder.

The specifications shown in this brochure apply to the specific encoder, not to the complete system. Any operation of the encoder outside of the specified range or for any applications other than the intended applications is at the user's own risk.

Mounting

Work steps to be performed and dimensions to be maintained during mounting are specified solely in the mounting instructions supplied with the unit. All data in this brochure regarding mounting are therefore provisional and not binding; they do not become terms of a contract.

All information on screw connections are given with respect to a mounting temperature of 15 °C to 35 °C.

Rotary encoders with functional safety

Mounting screws and central screws from HEIDENHAIN (not included in delivery) feature a coating which, after hardening, provides a materially bonding anti-rotation lock. Therefore the screws cannot be reused. The minimum shelf life is two years (storage at \leq 30 °C and \leq 65 % relative humidity). The expiration date is printed on the package.

Screw insertion and application of tightening torque must therefore take no longer than five minutes. The required strength is reached at room temperature after six hours. The curing time increases with decreasing temperature. Hardening temperatures below 5 °C are not permitted.

Screws with materially bonding antirotation lock must not be used more than once. In case of replacement, recut the threads and use new screws. A chamfer is required on threaded holes to prevent any scraping off of the adhesive layer.

Changes to the encoder

The correct operation and accuracy of encoders from HEIDENHAIN is ensured only if they have not been modified. Any changes, even minor ones, can impair the operation and reliability of the encoders, and result in a loss of warranty. This also includes the use of additional retaining compounds, lubricants (e.g. for screws) or adhesives not explicitly prescribed. In case of doubt, we recommend contacting HEIDENHAIN in Traunreut.

The following material properties and conditions must be complied with when customers plan and execute installation.

Mating material class	Aluminum	Steel	
Material type	Hardenable wrought aluminum alloys Unalloyed hardens		
Tensile strength R _m	\geq 220 N/mm ² \geq 600 N/mm ²		
Yield strength $R_{p,0.2}$ or yield point R_{e}	Not applicable ≥ 400 N/mm ²		
Shear strength τ _a	≥ 130 N/mm ²	≥ 390 N/mm ²	
Interface pressure p _G	≥ 250 N/mm ²	≥ 660 N/mm ²	
Modulus of elasticity E (at 20 °C)	70 kN/mm ² to 75 kN/mm ²	200 kN/mm ² to 215 kN/mm ²	
Coefficient of thermal expansion α _{therm} (at 20 °C)	$\leq 25 \times 10^{-6} \text{K}^{-1}$ $10 \times 10^{-6} \text{K}^{-1}$ to $17 \times 10^{-6} \text{K}^{-1}$		
Surface roughness Rz	≤ 16 µm		
Friction values	Mounting surfaces must be clean and free of grease. Use screws and washers in the delivery condition.		
Tightening process	Use a signaling torque tool according to DIN EN ISO 6789; accuracy ±6 %		
Mounting temperature	15 °C to 35 °C		

Conditions for longer storage times

HEIDENHAIN recommends the following in order to make storage times beyond 12 months possible:

- Leave the encoders in the original packaging
- The storage location should be dry, free of dust, and temperature-regulated. It should also not be subjected to vibrations, mechanical shock or chemical influences
- After every 12 months, rotate the shafts of encoders with integral bearings at low speed without axial or radial shaft loading (e.g., as running-in phase), so that the bearing lubrication is distributed evenly

Expendable parts

Encoders from HEIDENHAIN are designed for a long service life. Preventive maintenance is not required. However, they contain components that are subject to wear, depending on the application and manipulation. These include in particular cables with frequent flexing.

Other such components are the bearings of encoders with integral bearing, shaft sealing rings on rotary and angle encoders, and sealing lips on sealed linear encoders.

Service life

Unless specified otherwise, HEIDENHAIN encoders are designed for a service life of 20 years, equivalent to 40000 operating hours under typical operating conditions.

Insulation

The encoder housings are isolated against internal circuits.

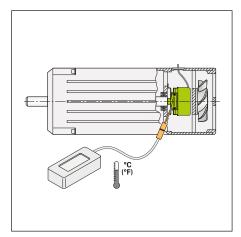
Rated surge voltage: 500 V Preferred value as per DIN EN 60 664-1 Overvoltage category II Contamination level 2 (no electrically conductive contamination)

Temperature ranges

For the unit in its packaging, the **storage temperature range** is –30 to +65 °C (HR 1120: –30 °C to 70 °C). The **operating temperature range** indicates the temperatures that the encoder may reach during operation in the actual installation environment. The function of the encoder is guaranteed within this range. The operating temperature is measured at the defined measuring point (see dimension drawing) and must not be confused with the ambient temperature.

The temperature of the encoder is influenced by:

- Mounting conditions
- Ambient temperature
- Self-heating of the encoder

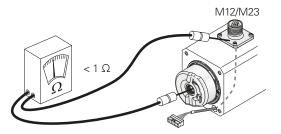

The self-heating of an encoder depends both on its design characteristics (stator coupling/solid shaft, shaft sealing ring, etc.) and on the operating parameters (rotational speed, voltage supply). Temporarily increased self-heating can also occur after very long breaks in operation (of several months). Please take a two-minute run-in period at low speeds into account. Higher heat generation in the encoder means that a lower ambient temperature is required to keep the encoder within its permissible operating temperature range.

This table shows the approximate values of self-heating to be expected in the encoders. In the worst case, a combination of operating parameters can exacerbate self-heating, for example a 30 V supply voltage and maximum rotational speed. Therefore, the actual operating temperature should be measured directly at the encoder if the encoder is operated near the limits of permissible parameters. Then suitable measures should be taken (fan, heat sinks, etc.) to reduce the ambient temperature far enough so that the maximum permissible operating temperature will not be exceeded during continuous operation.

For high speeds at maximum permissible ambient temperature, special versions are available on request with a reduced degree of protection (without shaft seal and its concomitant frictional heat).

Self-heating at shaft speed n _{max}	
Stub shaft/tapered shaft ROC/ROQ/ROD/ RIC/RIQ/ ExN 400/1300	\approx + 5 K \approx +10 K for IP66 protection
ROD 600	≈ + 75 K
ROD 1900	≈ + 10 K
Blind hollow shaft ECN/EQN/ ERN 400/1300	≈ + 30 K ≈ 40 K for IP66 protection
ECN/EQN/ ERN 1000	≈ + 10 K
Hollow through shaft ECN/ERN 100 ECN/EQN/ERN 400	≈ +40 K for IP64 protection ≈ 50 K for IP66 protection

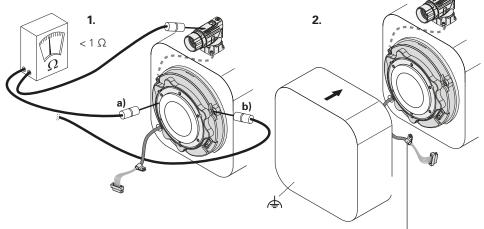
An encoder's typical self-heating values depend on its design characteristics at maximum permissible speed. The correlation between rotational speed and heat generation is nearly linear.


Measuring the actual operating temperature at the defined measuring point of the rotary encoder (see *Specifications*)

Electrical resistance

Encoders with integral bearing, pluggable cable and standard bearing

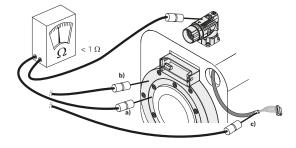
Check the resistance between the flange socket and the rotor.


Nominal value: < 1 ohm

Exposed encoders (Exl 100) without integral bearing and with pluggable cable

Check the resistance between the flange socket, rotor **a)** and stator mounting screw **b)**.

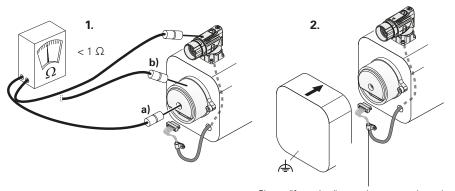
Nominal value: < 1 ohm



Clamp must be screwed conductively to the motor housing. Vendor part without CE marking. CE compliance of the complete system must be ensured.

Exposed encoders (Exl 4000) without integral bearing and with pluggable cable

Check the electrical resistance between the flange socket and the rotor **a)**, stator **b)** and crimp sleeve **c)**.


Nominal value: < 1 ohm

Exposed encoders (Exl 1100) without integral bearing and with pluggable cable

Check the resistance between the flange socket, rotor **a)** and stator (metal housing) **b)**.

Nominal value: < 1 ohm

Clamp (if required) must be screwed conductively to the motor housing. Vendor part without CE marking. CE compliance of the complete system must be ensured.

Temperature measurement in motors

Transmission of temperature values

To protect the motor from overload, the motor manufacturer usually monitors the temperature of the motor winding. In classic applications, the values from the temperature sensor are led via two separate lines to the subsequent electronics, where they are evaluated. Depending on their version, HEIDENHAIN rotary encoders with EnDat 2.2 interface feature an internal temperature sensor integrated in the encoder electronics as well as an evaluation circuit to which an external temperature sensor can be connected. In both cases, the respective digitized measured temperature value is transmitted purely serially over the EnDat protocol (as a component of the additional datum). This means that no separate lines from the motor to the drive controller are necessary.

Signaling of excessive temperature

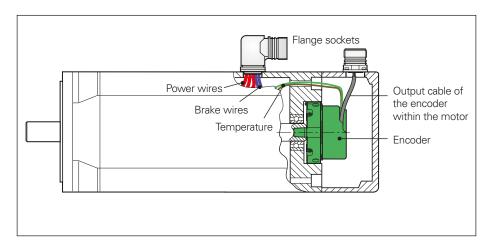
With regard to the internal temperature sensor, such rotary encoders can support a dual-level cascaded signaling of exceeded temperature. It consists of an EnDat warning and an EnDat error message.

Whether the respective encoder supports these warning and error messages can be read out from the following addresses of the integral memory:

- EnDat warning for excessive temperature:
 EnDat memory area Parameters of the encoder manufacturer, word 36 –
 Support of warnings, bit 2¹ –
 Temperature exceeded
- EnDat error message for excessive temperature: EnDat memory area Parameters of the encoder manufacturer for EnDat 2.2, word 35 – Support of operating condition error sources, bit 2⁶ – Temperature exceeded

Encoder	Interface	Internal temperature sensor ¹⁾	External temperature sensor Connection
ECI/EQI 1100	EnDat22	✓ (±1 K)	Possible
ECI/EBI 1100	EnDat22	✓ (±5 K)	-
ECN/EQN 1100	EnDat22	✓ (±5 K)	Possible
	EnDat01	-	-
ECN/EQN 1300	EnDat22	✓ (±4 K)	Possible
	EnDat01	-	-
	DQ01	✓ (±7 K)	Possible
ECN/EQN 400	EnDat22	✓ (±4 K)	Possible
	EnDat01	-	-
ECI/EQI 1300	EnDat22	✓ (±1 K)	Possible
	EnDat01	-	-
ECI/EBI 100	EnDat22	✓ (±4 K)	Possible
	EnDat01	-	-
ECI/EBI 4000	EnDat22	✓ (±1 K)	Possible

¹⁾ In parentheses: accuracy at 125 °C


In compliance with the EnDat specification, when the temperature reaches the warning threshold for excessive temperature of the internal temperature sensor, it triggers an EnDat warning (EnDat memory area for operating status, word 1 – warning, bit 2¹ – temperature exceeded). This warning threshold for the internal temperature sensor is saved in the EnDat memory area Operating parameters, word 6 - Threshold sensitivity warning bit for exceeded temperature, and can be individually adjusted. At the time the encoder is shipped, a default value corresponding to the maximum permissible operating temperature is stored here (temperature at measuring point M1 as per the dimension drawing). The temperature measured by the internal temperature sensor is higher by a device-specific amount than the temperature at measuring point M1.

The encoder features a further, but non-adjustable trigger threshold of the internal temperature sensor, which when exceeded triggers an **EnDat error message** (EnDat memory area for *operating status*, word 0 – *error messages*, bit 2² – *position* and, in the additional datum 2 *operating status error sources*, bit 2⁶ – *temperature exceeded*). This threshold sensitivity, if there is one, depends on the device and is shown in the specifications.

HEIDENHAIN recommends adjusting the threshold sensitivity so that it lies below the trigger threshold for the EnDat error message *Temperature exceeded* by a sufficient value for the respective application. The encoder's intended use also requires compliance with the operating temperature at the measuring point M1.

Information for the connection of an external temperature sensor

- The external temperature sensor must comply with the following prerequisites as per EN 61800-5-1:
 - Voltage class A
 - Contamination level 2
 - Overvoltage category 3
- Only connect passive temperature sensors
- The connections for the temperature sensor are galvanically connected with the encoder electronics.
- Depending on the application, the temperature sensor assembly (sensor + cable assembly) is to be mounted with double or reinforced insulation from the environment.
- Accuracy of temperature measurement depends on the temperature range.
- Note the tolerance of the temperature sensor
- The transmitted temperature value is not a safe value in the sense of functional safety
- The motor manufacturer is responsible for the quality and accuracy of the temperature sensor, as well as for ensuring that electrical safety is maintained
- Use a crimp connector with a suitable temperature range (e.g. up to 150 °C ID 1148157-01)

Cable configuration of the temperature wires in the motor.

The accuracy of temperature measurement depends on the sensor used and the temperature range.

	KTY84-130	PT1000
–40 °C to +80 °C	±6 K	±6 K
80.1 °C to 160 °C	±3 K	±4 K
160.1 °C to 200 °C	±6 K	±6 K

Specifications of the evaluation	
Resolution	0.1 K (with KTY84-130)
Voltage supply of sensor	$3.3\mathrm{V}$ over dropping resistor $\mathrm{R}_\mathrm{V}=2\mathrm{k}\Omega$
Measuring current typically	1.2 mA at 595 Ω 1.0 mA at 990 Ω
Total delay of temperature evaluation ¹⁾	160 ms max.
Cable length ²⁾ with wire cross section of 0.16 mm ² at TPE or 0.25 mm ² with cross-linked polyolefin	≤ 1 m

Filter time constants and conversion time are included. The time constant/response delay of the temperature sensor and the time lag for reading out data through the device interface are not included here.

²⁾ Limit of cable length due to interference injection. The measuring error due to the line resistance is negligible.

Connectable temperature sensors

The temperature evaluation within the rotary encoder is designed for a KTY 84-130 PTC thermistor. For other temperature sensors, the output value (value in additional datum 1) must be converted to a temperature value.

Figure 1 shows the relationship between the output value and the resistance of the temperature sensor. For the KTY 84-130, the temperature value equals the output value. The value unit is 0.1 kelvin.

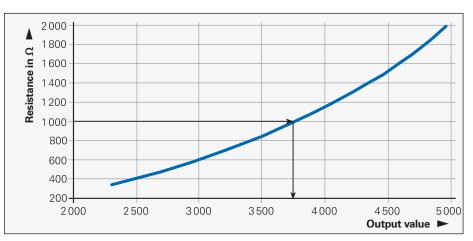


Figure 3.42: Relationship between output value and resistance

Example for KTY 84-130 temperature sensor: Sensor resistance = 1000 Ω \rightarrow output value (temperature value) 3751; which corresponds to 375, 1 K or 102 °C.

Figure 2 shows the relationship between the output value and temperature value for a PT1000. The temperature value for the PT1000 can be found in the graphic from the output value.

For more information, see page 44.

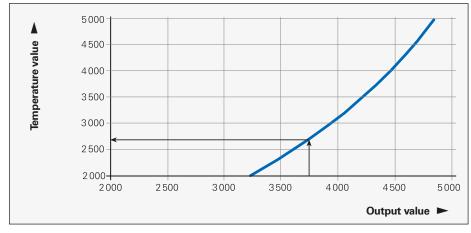


Figure 2: Relationship between output value and temperature value using the example of the PT1000

Example with temperature sensor PT1000:

Output value = $3751 \rightarrow$ temperature value = 2734 (corresponds to 0.3 °C).

The following polynomial can be used to mathematically calculate the temperature value:

Temperature_{PT1000} = $1.3823 \times 10^{-7} \times A^3 - 1.2005 \times 10^{-3} \times A^2 + 4.6807 \times A - 5.2276 \times 10^3$

O = Output value. The PT1000 polynomial is value for: $3400 \le O \le 4810$.

ECN/EQN 1100 series

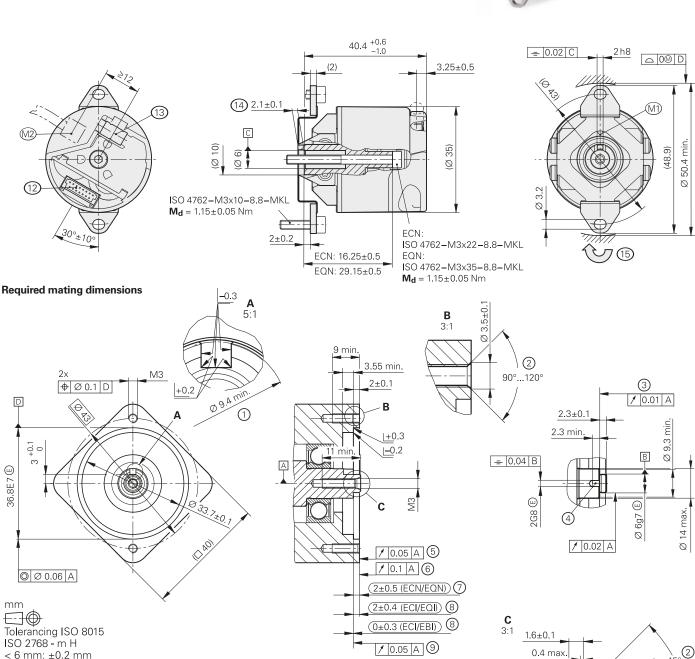
Absolute rotary encoders

- 75A stator coupling for plane surface
- Blind hollow shaft
- **Encoders available with functional safety**

0.4 max

0.7 max.

60°


Ø 3 2±0

10

(11)

Ø 7.5 max

10)

■ = Bearing of mating shaft

< 6 mm: ±0.2 mm

- (M) = Measuring point for operating temperature
- (10) = Measuring point for vibration
- = Contact surface of slot
- = Chamfer at start of thread is obligatory for materially bonding anti-rotation lock
- 3 = Shaft; ensure full-surface contact!
- = Slot required only for ECN/EQN and ECI/EQI, WELLA1 = 1KA
- = Flange surface of ECI/EQI; ensure full-surface contact! 5
- = Coupling surface of ECN/EQN 6
- = Maximum permissible deviation between shaft and coupling surface. Compensation of mounting tolerances and thermal expansion for which ±0.15 mm of dynamic axial motion is permitted
- = Maximum permissible deviation between shaft and flange surface. Compensation of mounting tolerances and thermal expansion
- = Flange surface of ECI/EBI; ensure full-surface contact!
- 10 = Undercut
- 11 = Possible centering hole
- 12 = 15-pin PCB connector
- $13 = \text{Cable gland with crimp sleeve, diameter } 4.3 \pm 0.1 7 \text{ long}$
- 14 = Positive locking element. Ensure correct engagement in slot 4, e.g. by measuring the device overhang
- 15 = Direction of shaft rotation for output signals as per the interface description

	Absolute						
	ECN 1113	ECN 1123 Functional Safety	EQN 1125	EQN 1135 Functional Safety			
Interface	EnDat 2.2						
Ordering designation	EnDat01	EnDat22	EnDat01	EnDat22			
Position values/revolution	8192 (13 bits)	8388608 (23 bits)	8192 (13 bits)	8388608 (23 bits)			
Revolutions	_		4096 (12 bits)				
Elec. permissible speed/ Deviations ¹⁾			4000 rpm/± 1 LSB 12000 rpm/± 16 LSB	12000 rpm (for continuous position value)			
Calculation time t _{cal} Clock frequency	≤ 9 µs ≤ 2 MHz	≤ 7 μs ≤ 8 MHz	≤ 9 µs ≤ 2 MHz	≤ 7 µs ≤ 8 MHz			
Incremental signals	~ 1 V _{PP} ¹⁾	_	~ 1 V _{PP} ¹⁾	_			
Line count	512	-	512	_			
Cutoff frequency –3 dB	≥ 190 kHz	-	≥ 190 kHz	_			
System accuracy	±60"						
Electrical connection via PCB connector	15-pin	15-pin ³⁾	15-pin	15-pin ³⁾			
Voltage supply	DC 3.6 V to 14 V	DC 3.6 V to 14 V					
Power consumption (max.)	$3.6 \text{ V:} \le 0.6 \text{ W}$ $14 \text{ V:} \le 0.7 \text{ W}$ $14 \text{ V:} \le 0.8 \text{ W}$						
Current consumption (typical)	5 V: 85 mA (without load) 5 V: 105 mA (without load)						
Shaft	Blind hollow shaft Ø 6 n	nm with positive fit elemen	t				
Mech. permiss. speed n	12000 rpm						
Starting torque	≤ 0.001 Nm (at 20 °C)		≤ 0.002 Nm (at 20 °C)				
Moment of inertia of rotor	$\approx 0.4 \times 10^{-6} \text{ kgm}^2$						
Permissible axial motion of measured shaft	±0.5 mm	±0.5 mm					
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 200 m/s ² (EN 60 068-2-6) \leq 1000 m/s ² (EN 60 068-2-27)						
Max. operating temp.	115 °C						
Min. operating temp.	−40 °C						
Protection EN 60529	IP40 when mounted						
Mass	≈ 0.1 kg						
Valid for ID	803427-xx	803429-xx	803428-xx	803430-xx			

¹⁾ Restricted tolerances

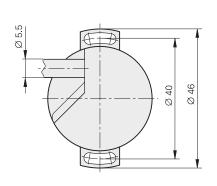
Signal amplitude: $0.80\,V_{PP}$ to $1.2\,V_{PP}$

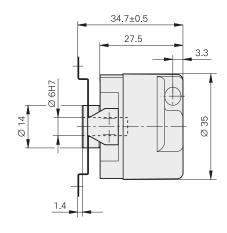
Asymmetry:
Amplitude ratio: 0.05 0.9 to 1.1

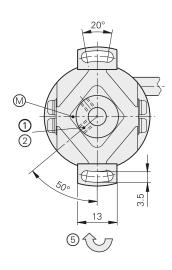
Phase angle: 90° ±5° elec.

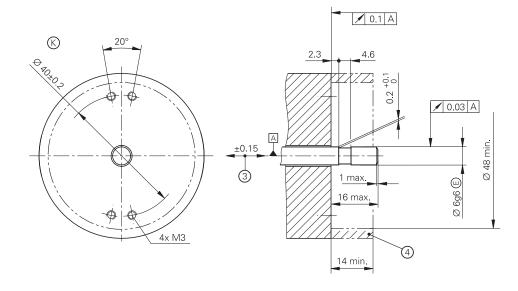
2) Velocity-dependent deviations between the absolute and incremental signals

3) With connection for temperature sensor, evaluation optimized for KTY 84-130


Functional safety available for ECN 1123 and EQN 1135. For dimensions and specifications see the Product Information document


ERN 1023


Incremental rotary encoders


- Stator coupling for plane surface
- Blind hollow shaft
- Block commutation signals

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm ■ = Bearing of mating shaft

© = Required mating dimensions

1 = 2 x screws in clamping ring. Tightening torque: 0.6 Nm ±0.1 Nm, SW1.5 2 = Reference mark position ±10°

3 = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted

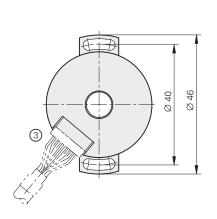
= Ensure protection against contact (EN 60 529)

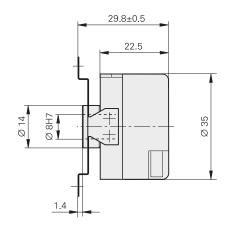
5 = Direction of shaft rotation for output signals as per the interface description

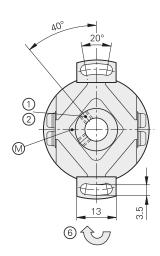
	ERN 1023				
Interface	ГШП				
Signal periods/rev*	500 512 600 1000 1024 1250 2000 2048 2500 4096 5000 8192				
Reference mark	One				
Output frequency Edge separation a	≤ 300 kHz ≥ 0.41 μs				
Commutation signals ¹⁾	□□□□□ (3 commutation signals U, V, W)				
Width*	2 x 180° (C01); 3 x 120° (C02); 4 x 90° (C03)				
System accuracy	±260" ±130"				
Electrical connection*	Cable 1 m, 5 m without coupling				
Voltage supply	DC 5 V ±0.5 V				
Current consumption (without load)	≤ 70 mA				
Shaft	Blind hollow shaft Ø 6 mm				
Mech. permiss. speed n	≤ 6000 rpm				
Starting torque	≤ 0.005 Nm (at 20 °C)				
Moment of inertia of rotor	$0.5 \times 10^{-6} \text{ kgm}^2$				
Permissible axial motion of measured shaft	±0.15 mm				
Vibration 25 Hz to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 60 068-2-6) \leq 1000 m/s ² (EN 60 068-2-27)				
Max. operating temp.	90 °C				
Min. operating temp.	Fixed cable: –20 °C Moving cable: –10 °C				
Protection EN 60 529	IP64				
Mass	≈ 0.07 kg (without cable)				
Valid for ID	684703-xx				

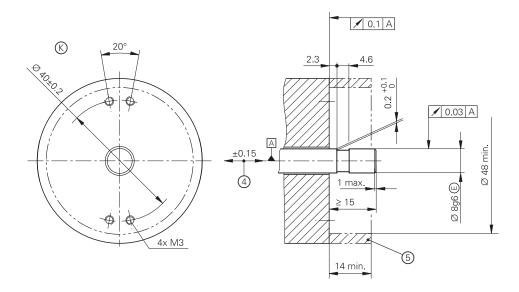
<sup>Bold: These preferred versions are available on short notice

* Please select when ordering


1) Three square-wave signals with signal periods of 90°, 120° or 180° mechanical phase shift, see Commutation signals for block commutation in the brochure interfaces of HEIDENHAIN encoders</sup>


ERN 1123


Incremental rotary encoders


- Stator coupling for plane surface
- Hollow through shaft
- Block commutation signals

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

■ = Bearing of mating shaft

⊗ = Required mating dimensions

1 = 2 x screws in clamping ring. Tightening torque: 0.6 Nm ±0.1 Nm, SW1.5 2 = Reference mark position ±10°

3 = JAE connector, 15-pin

4 = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted 5 = Ensure protection against contact (EN 60 529)

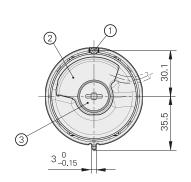
= Direction of shaft rotation for output signals as per the interface description

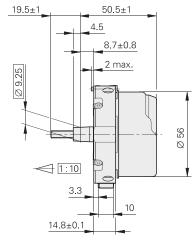
	ERN 1123				
Interface					
Signal periods/rev*	500 512 600 1000 1024 1250 2000 2048 2500 4096 5000 8192				
Reference mark	One				
Output frequency Edge separation <i>a</i>	≤ 300 kHz ≥ 0.41 µs				
Commutation signals ¹⁾	□□□□ (3 commutation signals U, V, W)				
Width*	2 x 180° (C01); 3 x 120° (C02); 4 x 90° (C03)				
System accuracy	±260" ±130"				
Electrical connection via PCB connector	15-pin				
Voltage supply	DC 5 V ±0.5 V				
Current consumption (without load)	≤ 70 mA				
Shaft	Hollow through shaft Ø 8 mm				
Mech. permiss. speed n	≤ 6000 rpm				
Starting torque	≤ 0.005 Nm (at 20 °C)				
Moment of inertia of rotor	$0.5 \times 10^{-6} \text{ kgm}^2$				
Permissible axial motion of measured shaft	±0.15 mm				
Vibration 25 Hz to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 60 068-2-6) \leq 1000 m/s ² (EN 60 068-2-27)				
Max. operating temp.	90 °C				
Min. operating temp.	-20 °C				
Protection EN 60 529	IP00 ²⁾				
Mass	≈ 0.06 kg				
Valid for ID	684702-xx				

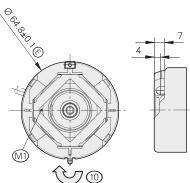
Bold: These preferred versions are available on short notice

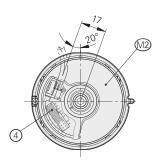
* Please select when ordering

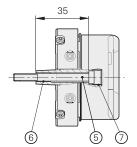
1) Three square-wave signals with signal periods of 90°, 120° or 180° mechanical phase shift, see Commutation signals for block commutation in the brochure interfaces of HEIDENHAIN encoders

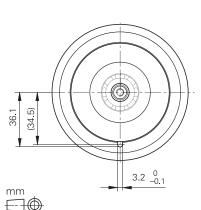

2) CE compliance of the complete system must be ensured by taking the correct measures during installation.

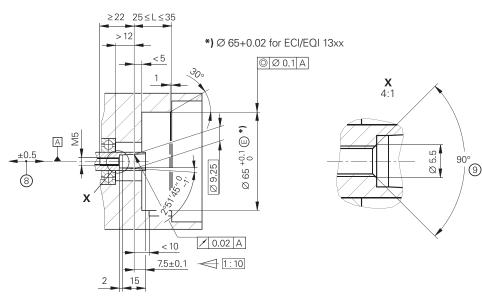

ECN/EQN 1300 series


Absolute rotary encoders


- 07B stator coupling with anti-rotation element for axial mounting
- 65B taper shaft
- Encoders available with functional safety
- Fault exclusion for rotor and stator coupling as per EN 61800-5-2 possible





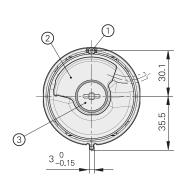


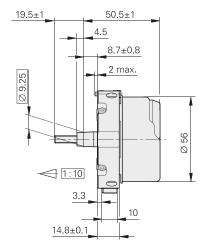
Required mating dimensions

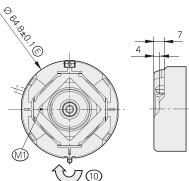
Tolerancing ISO 8015 ISO 2768 - m H 6 mm: ±0.2 mm

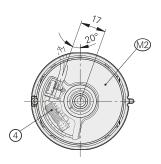
- = Bearing of mating shaft
- © = Required mating dimensions
- (M) = Measuring point for operating temperature
- (1) = Measuring point for vibration, see D 741714
- Clamping screw for coupling ring, width A/F 2, tightening torque 1.25 Nm 0.2 Nm
- 2 = Die-cast cover
- 3 = Screw plug width A/F 3 and 4, tightening torque 5 Nm + 0.5 Nm
- 4 = 12-pin or 16-pin PCB connector
- 5 = Screw, DIN 6912 M5x50 08.8 MKL A/F 4, tightening torque 5 Nm + 0.5 Nm
- 6 = M6 back-off thread
- 7 = M10 back-off thread
- 8 = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted
- 9 = Chamfer at start of thread is obligatory for materially bonding anti-rotation lock
- 10 = Direction of shaft rotation for output signals as per the interface description

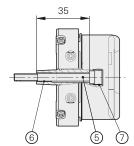
	Absolute					
	ECN 1313	ECN 1325 Functional Safety	EQN 1325	EQN 1337 Functional Safety		
Interface	EnDat 2.2					
Ordering designation	EnDat01	EnDat22	EnDat01	EnDat22		
Position values/revolution	8192 (13 bits)	33 554 432 (25 bits)	8192 (13 bits)	33 554 432 (25 bits)		
Revolutions	_		4096 (12 bits)			
Elec. permissible speed/ Deviations ¹⁾	5000 rpm/±1 LSB continuous position value) 1.2000 rpm/±100 LSB value) 1.2048 lines: 2.1500 rpm/±1 LSB		512 lines: 5000 rpm/±1 LSB 12 000 rpm/±100 LSB 2048 lines: 1500 rpm/±1 LSB 12 000 rpm/±50 LSB	15000 rpm (for continuous position value)		
Calculation time t _{cal} Clock frequency	≤ 9 μs ≤ 2 MHz	≤ 7 µs ≤ 16 MHz	≤ 9 μs ≤ 2 MHz	≤ 7 μs ≤ 16 MHz		
Incremental signals	~ 1 V _{PP} ¹⁾	-	~ 1 V _{PP} ¹⁾	_		
Line count*	512 2048	2048	512 2048	2048		
Cutoff frequency –3 dB	2048 lines: ≥ 400 kHz 512 lines: ≥ 130 kHz	-	2048 lines: ≥ 400 kHz 512 lines: ≥ 130 kHz	-		
System accuracy	512 lines: ±60"; 2048 lin	nes: ±20"		1		
Electrical connection via PCB connector	12-pin	16-pin with connection for temperature sensor ³⁾	12-pin	16-pin with connection for temperature sensor ³⁾		
Voltage supply	DC 3.6 V to 14 V					
Power consumption (max.)	$3.6 \text{ V:} \le 0.6 \text{ W}$ $3.6 \text{ V:} \le 0.7 \text{ W}$ $14 \text{ V:} \le 0.7 \text{ W}$ $14 \text{ V:} \le 0.8 \text{ W}$					
Current consumption (typical)	5 V: 85 mA (without load) 5 V: 105 mA (without load)					
Shaft	Taper shaft Ø 9.25 mm;	taper 1:10				
Mech. permiss. speed n	≤ 15000 rpm	≤ 15000 rpm ≤ 12000 rpm				
Starting torque	≤ 0.01 Nm (at 20 °C)		1			
Moment of inertia of rotor	2.6 x 10 ⁻⁶ kgm ²					
Natural frequency of the stator coupling	≥ 1800 Hz					
Permissible axial motion of measured shaft	±0.5 mm					
Vibration 55 Hz to 2000 Hz Shock 6 ms	≤ 300 m/s ^{2 4)} (EN 6006 ≤ 2000 m/s ² (EN 60068	68-2-6) 3-2-27)				
Max. operating temp.	115 °C					
Min. operating temp.	−40 °C					
Protection EN 60529	IP40 when mounted	IP40 when mounted				
Mass	≈ 0.25 kg					
Valid for ID	768295-xx	683643-xx	827039-xx	683645-xx		
,	2) Velocity-dependent deviations between the absolute and incremental signals Asymmetry: 0.05 absolute and incremental signals 3) Evaluation optimized for KTY 84-130 4) As per standard for room temperature; for operating temperature Up to 100 °C: ≤ 30 Signal-to-noise ratio E, F: ≥ 100 mV Up to 115 °C: ≤ 15					

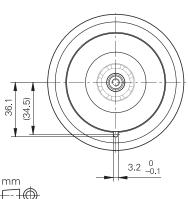

Functional safety available for ECN 1325 and EQN 1337. For dimensions and specifications see the Product Information document

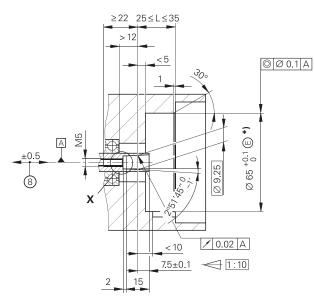

ECN/EQN 1300S series

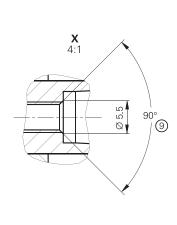

Absolute rotary encoders


- 07B stator coupling with anti-rotation element for axial mounting
- 65B taper shaft
- Encoders available with functional safety
- Fault exclusion for rotor and stator coupling as per EN 61800-5-2 possible









Required mating dimensions

Tolerancing ISO 8015 ISO 2768 - m H 6 mm: ±0.2 mm

■ ■ Bearing of mating shaft

Measuring point for operating temperature

(M2) = Measuring point for vibration, see D 741714

1 = Clamping screw for coupling ring, width A/F 2, tightening torque 1.25 Nm – 0.2 Nm

2 = Die-cast cover

3 = Screw plug width A/F 3 and 4, tightening torque 5 Nm + 0.5 Nm

4 = 16-pin PCB connector

5 = Screw, DIN 6912 - M5x50 - 08.8 - MKL A/F 4, tightening torque 5 Nm + 0.5 Nm

6 = M6 back-off thread

7 = M10 back-off thread

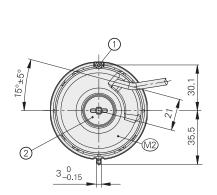
8 = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted

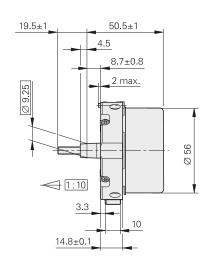
9 = Chamfer at start of thread is obligatory for materially bonding anti-rotation lock

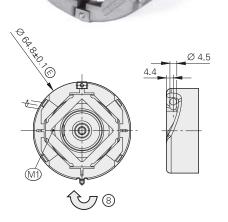
10 = Direction of shaft rotation for output signals as per the interface description

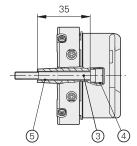
	Absolute				
	ECN 1324S Functional Safety	EQN 1336S Functional Safety			
Interface	DRIVE-CLIQ				
Ordering designation	DQ01				
Position values/revolution	16777216 (24 bits)				
Revolutions	-	4096 (12 bits)			
Speed ¹⁾	\leq 15 000 rpm (at ≥ 2 position requests per revolution) \leq 12 000 rpm (at ≥ 2 position requests revolution)				
ProcessingTIME_MAX_ACTVAL	≤ 8 µs				
Incremental signals	-				
System accuracy	±20"				
Electrical connection via PCB connector	16-pin with connection for temperature sensor ¹⁾				
Voltage supply	DC 10 V to 28 V				
Power consumption (max.)	10 V: ≤ 0.9 W 28.8 V: ≤ 1 W	10 V: ≤ 1 W 28.8 V: ≤ 1.1 W			
Current consumption (typical)	At 24 V: 38 mA (without load)	At 24 V: 43 mA (without load)			
Shaft	Taper shaft Ø 9.25 mm; taper 1:10				
Starting torque	≤ 0.01 Nm (at 20 °C)				
Moment of inertia of rotor	$2.6 \times 10^{-6} \text{ kgm}^2$				
Natural frequency of the stator coupling	≥ 1800 Hz				
Permissible axial motion of measured shaft	±0.5 mm				
Vibration 55 Hz to 2000 Hz Shock 6 ms	$\leq 300 \text{ m/s}^2 \text{ (EN 60068-2-6)}$ $\leq 2000 \text{ m/s}^2 \text{ (EN 60068-2-27)}$				
Max. operating temp.	100 °C				
Min. operating temp.	_30 °C				
Protection EN 60529	IP40 when mounted				
Mass	≈ 0.25 kg				
Valid for ID	1042274-xx 1042276-xx				

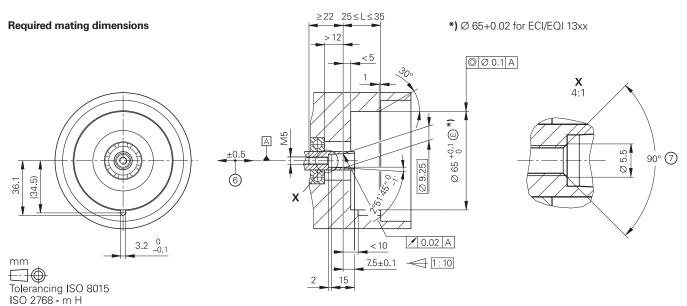
Evaluation optimized for KTY 84-130


Functional safety available for ECN 1324S and EQN 1336S. For dimensions and specifications see the Product Information document


DRIVE-CLiQ is a registered trademark of SIEMENS AG.


ECN/EQN 400 series


Absolute rotary encoders


- 07B stator coupling with anti-rotation element for axial mounting
- 65B taper shaft
- · Encoders available with functional safety
- Fault exclusion for rotor and stator coupling as per EN 61800-5-2 possible

Bearing of mating shaft

< 6 mm: ±0.2 mm

- (M) = Measuring point for operating temperature
- Measuring point for vibration, see D 741714
- 1 = Clamping screw for coupling ring, width A/F 2, tightening torque $1.25 \, \text{Nm} 0.2 \, \text{Nm}$
- 2 = Screw plug width A/F 3 and 4, tightening torque 5 Nm + 0.5 Nm
- 3 =Screw, DIN 6912 M5x50 08.8 MKL A/F 4, tightening torque 5 Nm + 0.5 Nm
- 4 = M10 back-off thread
- 5 = M6 back-off thread
- 6 = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted
- 7 = Chamfer at start of thread is obligatory for materially bonding anti-rotation lock
- 8 = Direction of shaft rotation for output signals as per the interface description

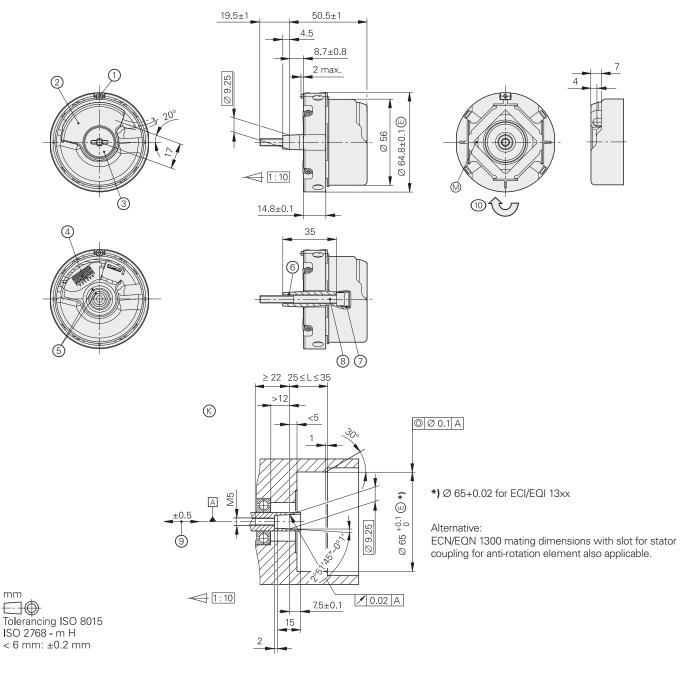
	Absolute				
	ECN 413	ECN 425 Functional Safety	EQN 425	EQN 437 Functional Safety	
nterface	EnDat 2.2				
Ordering designation	EnDat01	EnDat22	EnDat01	EnDat22	
Position values/revolution	8192 (13 bits)	33554432 (25 bits)	8192 (13 bits)	33554432 (25 bits)	
Revolutions	_		4096 (12 bits)		
Elec. permissible speed/ Deviations ²⁾	1500 rpm/±1 LSB 12000 rpm/± 50 LSB	15 000 rpm (for continuous position value)	1500 rpm/±1 LSB 12000 rpm/± 50 LSB	15000 rpm (for continuous position value)	
Calculation time t _{cal} Clock frequency	≤ 9 µs ≤ 2 MHz	≤ 7 μs ≤ 16 MHz	≤ 9 µs ≤ 2 MHz	≤ 7 µs ≤ 16 MHz	
Incremental signals	~ 1 V _{PP} ¹⁾	-	~ 1 V _{PP} ¹⁾	_	
Line count	2048				
Cutoff frequency –3 dB	≥ 400 kHz	_	≥ 400 kHz	_	
System accuracy	±20"				
Electrical connection*	Cable 5 m, with or without M23 coupling	Cable 5 m, with M12 coupling	Cable 5 m, with or without M23 coupling	Cable 5 m, with M12 coupling	
Voltage supply	DC 3.6 V to 14 V				
Power consumption (max.)	$3.6 \text{ V:} \le 0.6 \text{ W}$ $3.6 \text{ V:} \le 0.7 \text{ W}$ $14 \text{ V:} \le 0.7 \text{ W}$ $14 \text{ V:} \le 0.8 \text{ W}$				
Current consumption (typical)	5 V: 85 mA (without load	(k	5 V: 105 mA (without loa	ad)	
Shaft	Taper shaft Ø 9.25 mm;	taper 1:10	<u>'</u>		
Mech. permiss. speed n	≤ 15000 rpm		≤ 12 000 rpm		
Starting torque	≤ 0.01 Nm (at 20 °C)				
Moment of inertia of rotor	2.6 x 10 ⁻⁶ kgm ²				
Natural frequency of the stator coupling	≥ 1800 Hz				
Permissible axial motion of measured shaft	±0.5 mm				
Vibration 55 Hz to 2000 Hz Shock 6 ms	$\leq 300 \text{ m/s}^2 \text{ (EN } 60068-2-6)$ $\leq 2000 \text{ m/s}^2 \text{ (EN } 60068-2-27)$				
Max. operating temp.	100 °C				
Min. operating temp.	Fixed cable: –40 °C Moving cable: –10 °C				
Protection EN 60529	IP64 when mounted				
Mass	≈ 0.25 kg				
Valid for ID	1065932-xx	683644-xx	1109258-xx	683646-xx	
			2) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

* Please select when ordering
1) Restricted tolerances

Signal amplitude: Asymmetry:

 $0.8\,V_{PP}$ to $1.2\,V_{PP}$ 0.05

Amplitude ratio: 0.9 to 1.1 Phase angle: $90^{\circ} \pm 5^{\circ}$ elec. Velocity-dependent deviations between the absolute and incremental signals


Functional safety available for ECN 425 and EQN 437. For dimensions and specifications see the Product Information document

ERN 1300 series

Incremental rotary encoders

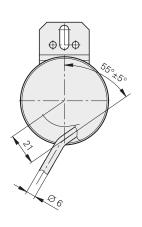
- 06 stator coupling for axis mounting
- 65B taper shaft

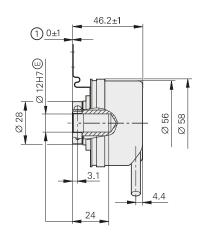
- Bearing of mating shaft
- © = Required mating dimensions
- 1 = Clamping screw for coupling ring, width A/F 2, tightening torque 1.25 Nm 0.2 Nm
- Screw plug width A/F 3 and 4, tightening torque 5 Nm + 0.5 Nm
 12-pin, 14-pin or 16-pin PCB connector 3
- = Reference mark position indicated on shaft and cap
- 6 = M6 back-off thread
- = M10 back-off thread
- 8 = Self-tightening screw, M5x50 DIN 6912 A/F4, tightening torque 5 Nm + 0.5 Nm 9 = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted
- 10 = Direction of shaft rotation for output signals as per the interface description

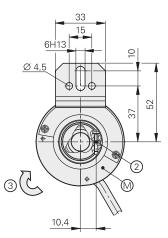
mm

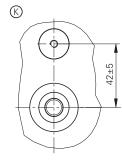
	Incremental				
	ERN 1321	ERN 1381	ERN 1387	ERN 1326	
Interface		√ 1 V _{PP} ¹⁾	'	ПШТТ	
Line count*/ System accuracy	1024/±64" 2048/±32" 4096/±16"	512/±60" 2048/±20" 4096/±16"	2048/±20"	1024/±64" 2048/±32" 4096/±16"	8192/±16" ⁵⁾
Reference mark	One				
Output frequency Edge separation <i>a</i> Cutoff frequency –3 dB	≤ 300 kHz ≥ 0.35 µs -	- ≥ 210 kHz		≤ 300 kHz ≥ 0.35 µs -	≤ 150 kHz ≥ 0.22 μs
Commutation signals	_		~ 1 V _{PP} ¹⁾	ПШТТ	
Width*	_		Z1 track ²⁾	3 x 120°; 4 x 90° ³⁾	
Electrical connection via PCB connector	12-pin	14-pin		16-pin	
Voltage supply	DC 5 V ±0.5 V	V DC 5V ± 0.25 V		DC 5 V ± 0.5 V	
Current consumption (without load)	≤ 120 mA ≤ 130 mA			≤ 150 mA	
Shaft	Taper shaft Ø 9.25 i	mm; taper 1:10	'		
Mech. permiss. speed n	≤ 15000 rpm				
Starting torque	≤ 0.01 Nm (at 20 °C	<u>)</u>			
Moment of inertia of rotor	2.6 x 10 ⁻⁶ kgm ²				
Natural frequency of the stator coupling	≥ 1800 Hz				
Permissible axial motion of measured shaft	±0.5 mm				
Vibration 55 Hz to 2000 Hz Shock 6 ms	≤ 300 m/s ^{2 4)} (EN ≤ 2000 m/s ² (EN 60	60 068-2-6) 0 068-2-27)			
Max. operating temp.	120 °C	120 °C 4096 lines: 80 °C	120 °C		
Min. operating temp.	-40 °C				
Protection EN 60529	IP40 when mounted				
Mass	≈ 0.25 kg				
Valid for ID	385423-xx	534118-xx	749144-xx	574485-xx	

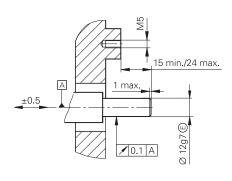
* Please select when ordering


1) Restricted tolerances Signal amplitude: 0.8 V_{PP} to 1.2 V_{PP}


EQN/ERN 400 series


Absolute and incremental rotary encoders


- Torque support
- Blind hollow shaft
- Replacement for Siemens 1XP8000



mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

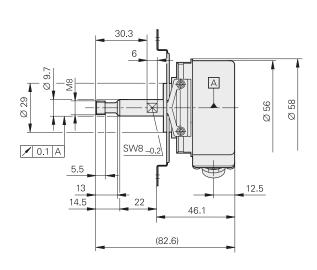
Siemens model	Replacement model		ID	Design		
1XP8012-10	ERN 430 ¹⁾	HTL	597331-76 Cable 0.8 m with mounted coup M23 central fastening, 17-pin	597331-76	597331-76	Cable 0.8 m with mounted coupling and
1XP8032-10	ERN 430	HTL		M23 central fastening, 17-pin		
1XP8012-20	ERN 420 ¹⁾	TTL	597330-74			
1XP8032-20	ERN 420	TTL				
1XP8014-10	EQN 425 ¹⁾	EnDat	649989-74	Cable 1 m with M23 coupling, 17-pin		
1XP8024-10	EQN 425	EnDat				
1XP8014-20	EQN 425 ¹⁾	SSI	649990-73			
1XP8024-20	EQN 425	SSI				

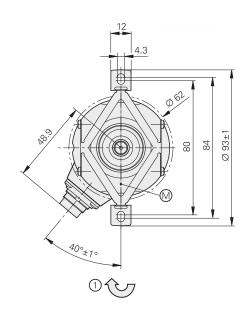
¹⁾ Original Siemens encoder features M23 flange socket, 17-pin

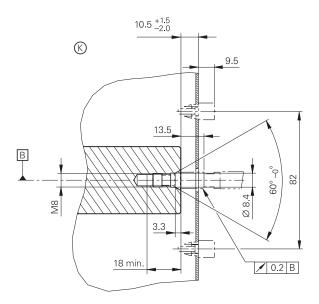
- Bearing of mating shaft
- © = Required mating dimensions
 ⊚ = Measuring point for operating temperature
- 1 = Distance from clamping ring to coupling
- 2 = Clamping screw with hexalobular socket X8, tightening torque 1.1 Nm ±0.1 Nm 3 = Direction of shaft rotation for output signals as per the interface description

	Absolute		Incremental			
	EQN 425		ERN 420	ERN 430		
Interface*	EnDat 2.2	SSI	ГШТТ	□□HTL		
Ordering designation	EnDat01	SSI41r1	_	-		
Positions per revolution	8192 (13 bits)		-	-		
Revolutions	4096		-	-		
Code	Pure binary	Gray	-	-		
Elec. permissible speed Deviation ¹⁾	≤ 1500/10000 rpm ±1 LSB/±50 LSB	≤ 12000 rpm ±12 LSB	-	-		
Calculation time t _{cal} Clock frequency	≤ 9 μs ≤ 2 MHz	≤ 5 μs -	-	-		
Incremental signals	~ 1 V _{PP} ²⁾		ГШТТ	□□HTL		
Line counts	2048	512	1024			
Cutoff frequency –3 dB Output frequency Edge separation <i>a</i>	≥ 400 kHz - -	≥ 130 kHz - -	- ≤ 300 kHz ≥ 0.39 μs			
System accuracy	±20"	±60"	1/20 of grating period			
Electrical connection	Cable 1 m, with M23 coupling		Cable 0.8 m with mounted coupling and central fastening			
Voltage supply	DC 3.6 V to 14 V	DC 10 V to 30 V	DC 5 V ± 0.5 V	DC 10 V to 30 V		
Power consumption (max.)	3.6 V: ≤ 0.7 W 14 V: ≤ 0.8 W	10 V: ≤ 0.75 W 30 V: ≤ 1.1 W	-	-		
Current consumption (typical, without load)	<i>5 V:</i> 105 mA	5 V: 120 mA 24 V: 28 mA	≤ 120 mA	≤ 150 mA		
Shaft	Bottomed hollowed sha	aft Ø 12 mm				
Mech. permiss. speed n	≤ 6000 rpm					
Starting torque	≤ 0.05 Nm at 20 °C					
Moment of inertia of rotor	$\leq 4.6 \times 10^{-6} \text{ kgm}^2$					
Permissible axial motion of measured shaft	±0.5 mm					
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 300 m/s ² (EN 60068- \leq 1000 m/s ² (EN 60068	\leq 300 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)				
Max. operating temp.	100 °C					
Min. operating temp.	Fixed cable: –40 °C Moving cable: –10 °C					
Protection EN 60529	IP66					
Mass	≈ 0.3 kg					
Valid for ID	649989-xx	649990-xx	597330-xx	597331-xx		

^{*} Please select when ordering


1) Velocity-dependent deviations between the absolute value and incremental signals
2) Restricted tolerances: Signal amplitudes 0.8 V_{PP} to 1.2 V_{PP}


ERN 401 series


Incremental rotary encoders

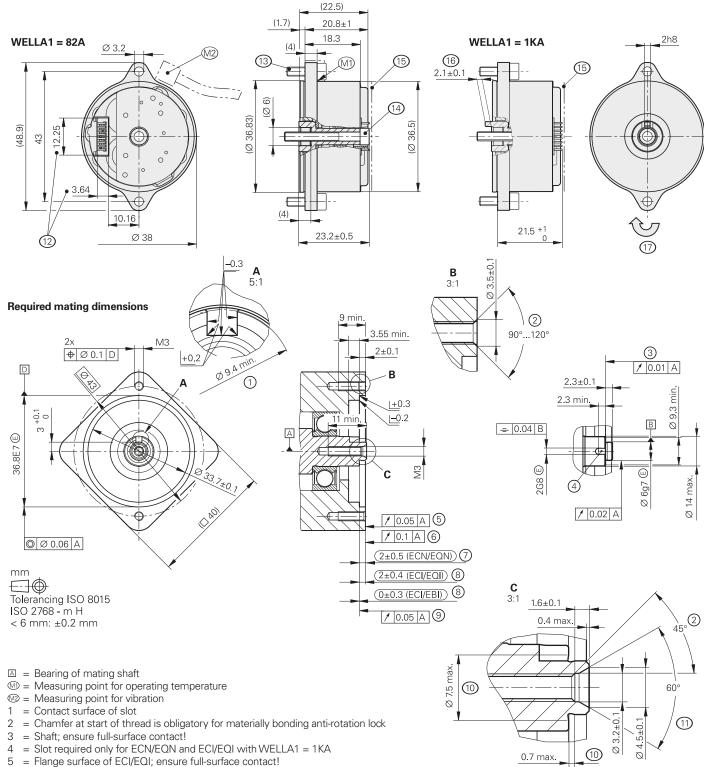
- Stator coupling via fastening clips
- Blind hollow shaft
- Replacement for Siemens 1XP8000
- Includes installation kit with housing

Siemens model	Replacement model	ID
1XP8001-2	ERN 421	538724-71
1XP8001-1	ERN 431	538725-02

△ = Encoder bearingB = Bearing of mating shaft

© = Required mating dimensions

Measuring point for operating temperature
 Direction of shaft rotation for output signals as per the interface description


	Incremental			
	ERN 421	ERN 431		
Interface	ГШПІ	ГШНТ		
Line counts	1024			
Reference mark	One			
Output frequency Edge separation <i>a</i>	≤ 300 kHz ≥ 0.39 µs			
System accuracy	1/20 of grating period			
Electrical connection	Flange socket, Binder, radial			
Voltage supply	DC 5V ±0.5V	DC 10 V to 30 V		
Current consumption without load	≤ 120 mA	≤ 150 mA		
Shaft	Solid shaft with M8 external thread, 60° centering t	aper		
Mech. permissible speed n ¹⁾	≤ 6000 rpm			
Starting At 20 °C torque Below –20 °C	≤ 0.01 Nm ≤ 1 Nm			
Moment of inertia of rotor	$\leq 4.3 \times 10^{-6} \text{ kgm}^2$			
Permissible axial motion of measured shaft	±1 mm			
Vibration 55 Hz to 2000 Hz Shock 6 ms	≤ 100 m/s ² (EN 60068-2-6); higher values upon red ≤ 1000 m/s ² (EN 60068-2-27)	quest		
Max. operating temp.	100 °C			
Min. operating temp.	-40 °C			
Protection EN 60529	IP66			
Mass	≈ 0.3 kg			
Valid for ID	538724-xx	538725-xx		
1) For the correlation between th	ne operating temperature and the shaft speed or sup	ply voltage, see <i>General mechanical information</i>		

ECI/EQI 1100 series

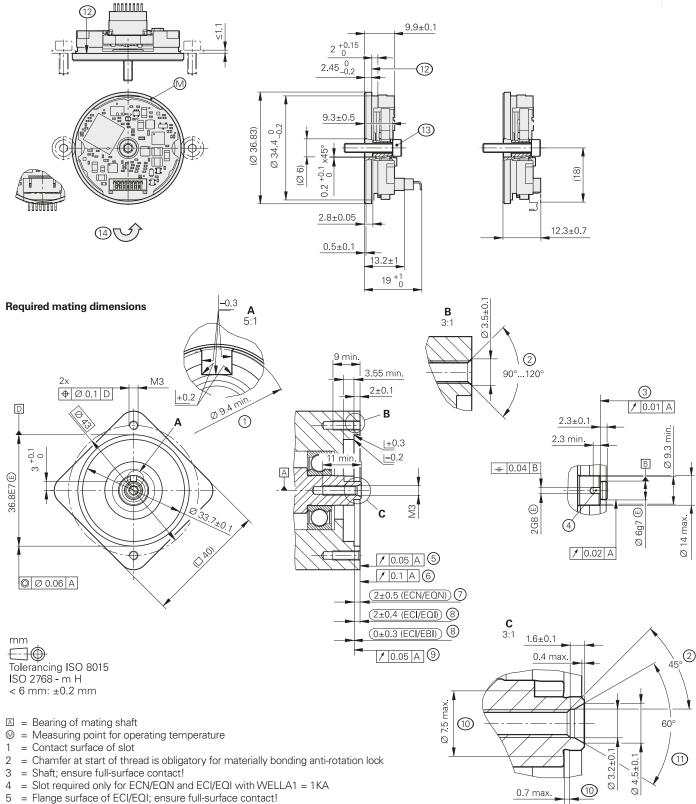
Absolute rotary encoders

- Flange for axial mounting
- Blind hollow shaft
- · Without integral bearing

- 6 = Coupling surface of ECN/EQN
- 7 = Maximum permissible deviation between shaft and coupling surface. Compensation of mounting tolerances and thermal expansion for which ±0.15 mm of dynamic axial motion is permitted
- 8 = Maximum permissible deviation between shaft and flange surface. Compensation of mounting tolerances and thermal expansion
- 9 = Flange surface of ECI/EBI; ensure full-surface contact!
- 10 = Undercut
- 11 = Possible centering hole
- 12 = Opening for PCB connector min. 1.5 mm larger all around
- 13 = Screw, ISO 4762 M3x10 8.8 MKL, tightening torque 1 Nm \pm 0.1 Nm
- 14 = Screw, ISO 4762 M3x25 8.8 MKL, tightening torque 1 Nm ± 0.1 Nm
- 15 = Maintain at least 1 mm distance from the cover. Note the opening for the connector! 16 = Positive locking element. Ensure correct engagement in slot 4
- 17 = Direction of shaft rotation for output signals as per the interface description

	Absolute			
	ECI 1119 Safety	EQI 1131 Functional Safety		
Interface	EnDat 2.2			
Ordering designation	EnDat22			
Position values/revolution	524288 (19 bits)			
Revolutions	-	4096 (12 bits)		
Calculation time t _{cal} Clock frequency	≤ 5 μs ≤ 16 MHz			
System accuracy	±120"			
Electrical connection via PCB connector	15-pin			
Voltage supply	DC 3.6 V to 14 V			
Power consumption (max.)	3.6 V: ≤ 0.65 W 14 V: ≤ 0.7 W	3.6 V: ≤ 0.7 W 14 V: ≤ 0.85 W		
Current consumption (typical)	5 V: 95 mA (without load)	5 V: 115 mA (without load)		
Shaft*	Blind hollow shaft for axial clamping Ø 6 mm without positive lock (82A) or with positive lock (1KA)			
Mech. permiss. speed n	≤ 15000 rpm	≤ 12000 rpm		
Moment of inertia of rotor	0.3 x 10 ⁻⁶ kgm ²			
Permissible axial motion of measured shaft	±0.4 mm			
Vibration 55 Hz to 2000 Hz Shock 6 ms	≤ 400 m/s ² (EN 60068-2-6) ≤ 2000 m/s ² (EN 60068-2-27)			
Max. operating temp.	110 °C			
Min. operating temp.	−40 °C			
Trigger threshold of error message for excessive temperature	125 °C (measuring accuracy of internal temperature sensor: ± 1 K)			
Protection EN 60529	IP00 when mounted			
Mass	≈ 0.04 kg			
Valid for ID	826930-xx	826980-xx		

* Please select when ordering

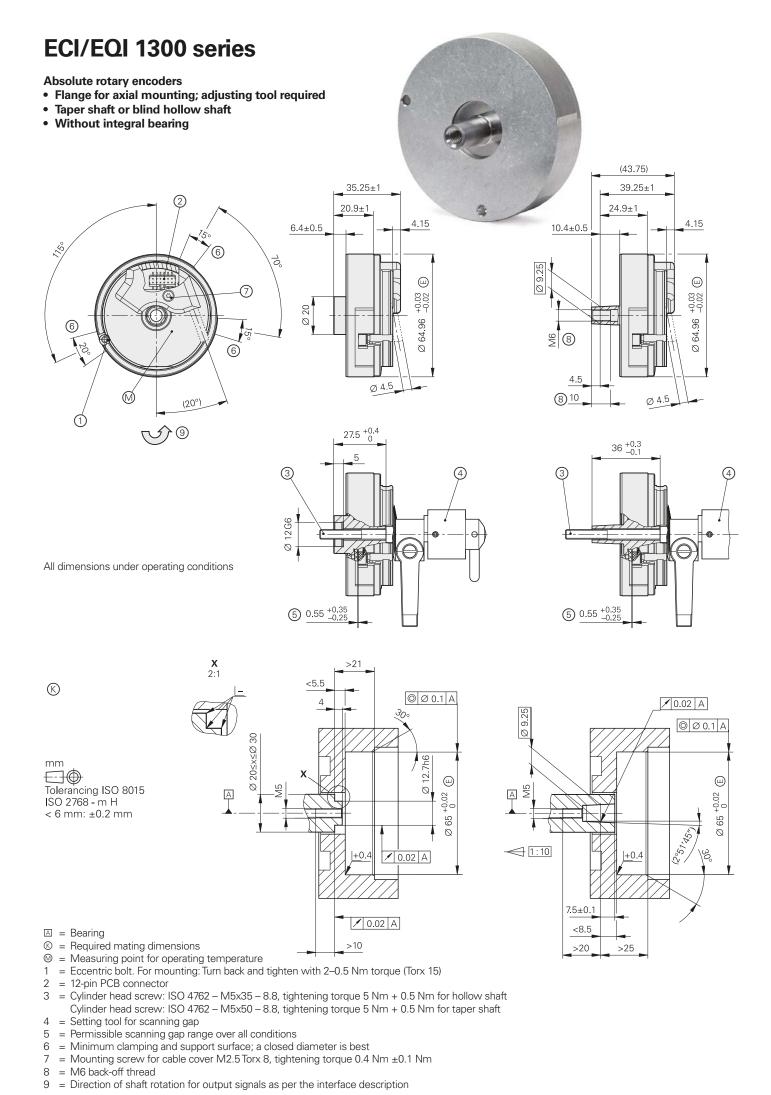

Functional safety available. For dimensions and specifications see the Product Information document

ECI/EBI 1100 series

Absolute rotary encoders

- Flange for axial mounting
- Blind hollow shaft
- · Without integral bearing
- EBI 1135: Multiturn function via battery-buffered revolution counter

6 = Coupling surface of ECN/EQN


- 7 = Maximum permissible deviation between shaft and coupling surface. Compensation of mounting tolerances and thermal expansion for which ±0.15 mm of dynamic axial motion is permitted
- 8 = Maximum permissible deviation between shaft and flange surface. Compensation of mounting tolerances and thermal expansion
- 9 = Flange surface of ECI/EBI; ensure full-surface contact!
- 10 = Undercut
- 11 = Possible centering hole
- 12 = Clamping surface
- 13 = Screw, ISO 4762 M3x16 8.8 with materially bonding anti-rotation lock, tightening torque $1.15 \text{ Nm} \pm 0.05 \text{ Nm}$
- 14 = Direction of shaft rotation for output signals as per the interface description

	Absolute			
	ECI 1118	EBI 1135		
Interface	EnDat 2.2			
Ordering designation	EnDat22 ¹⁾			
Position values/revolution	262 144 (18 bits)	262 144 (18 bits; 19-bit data word length with LSB = 0)		
Revolutions	-	65 536 (16 bits)		
Calculation time t _{cal} Clock frequency	≤ 6 µs ≤ 8 MHz			
System accuracy	±120"			
Electrical connection via PCB connector	15-pin			
Voltage supply	DC 3.6 V to 14 V	Rotary encoder U _P : DC 3.6 V to 14 V Backup battery U _{BAT} : DC 3.6 V to 5.25 V		
Power consumption (max.)	Normal operation at 3.6 V:0.52 W Normal operation at 14 V: 0.6 W			
Current consumption (typical)	5 V: 80 mA (without load)	Normal operation at 5 V: 80 mA (without load) Buffer mode ²⁾ : 22 μA (with rotating shaft) 12 μA (at standstill)		
Shaft	Blind hollow shaft Ø 6 mm, axial clamping			
Mech. permiss. speed n	≤ 15000 rpm	≤ 12000 rpm		
Mech. permiss. acceleration	$\leq 10^5 \text{ rad/s}^2$			
Moment of inertia of rotor	0.2 x 10 ⁻⁶ kgm ²			
Permissible axial motion of measured shaft	±0.3 mm			
Vibration 55 Hz to 2000 Hz Shock 6 ms	≤ 300 m/s ² (EN 60 068-2-6) ≤ 1000 m/s ² (EN 60 068-2-27)			
Max. operating temp.	115 °C			
Min. operating temp.	-20 °C			
Protection EN 60529	IP00 ³⁾			
Mass	≈ 0.02 kg			
Valid for ID	728563-xx	820725-xx		
1)				

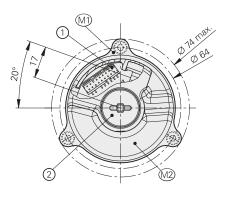
¹⁾ External temperature sensor and online diagnostics are not supported. Compliance with the EnDat specification 297403 and the EnDat Application Notes 722024, Chapter 13, *Battery-buffered encoders*, is required for correct control of the encoder.

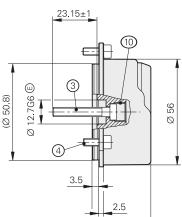
2) At T = 25 °C; U_{BAT} = 3.6 V

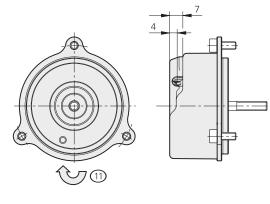
3) CE compliance of the complete system must be ensured by taking the correct measures during installation.

	Absolute				
	ECI 1319	EQI 1331			
Interface	EnDat 2.2	EnDat 2.2			
Ordering designation	EnDat01	EnDat01			
Position values/revolution	524288 (19 bits)				
Revolutions	-	4096 (12 bits)			
Elec. permissible speed/ Deviation ¹⁾	≤ 3750 rpm/±128 LSB ≤ 15000 rpm/± 512 LSB	≤ 4000 rpm/± 128 LSB ≤ 12000 rpm/± 512 LSB			
Calculation time t _{cal} Clock frequency	≤ 8 µs ≤ 2 MHz				
Incremental signals	√ 1 V _{PP}				
Line count	32				
Cutoff frequency –3 dB	≥ 6 kHz typical				
System accuracy	±180"				
Electrical connection via PCB connector	12-pin				
Voltage supply	DC 4.75 V to 10 V				
Power consumption (max.)	4.75 V: ≤ 0.62 W 10 V: ≤ 0.63 W	4.75 V: ≤ 0.73 W 10 V: ≤ 0.74 W			
Current consumption (typical)	5 V: 85 mA (without load)	5 V: 102 mA (without load)			
Shaft*	Taper shaft Ø 9.25 mm; Taper 1:' Blind hollow shaft Ø 12.0 mm; Length 5 r	nm			
Moment of inertia of rotor	Taper shaft: 2.1 x 10 ⁻⁶ kgm ² Hollow shaft: 2.8 x 10 ⁻⁶ kgm ²				
Mech. permiss. speed n	≤ 15000 rpm	≤ 12000 rpm			
Permissible axial motion of measured shaft	-0.2/+0.4 mm with 0.5 mm scale-to-reticle gap				
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 200 m/s ² (EN 60068-2-6) \leq 2000 m/s ² (EN 60068-2-27)				
Max. operating temp.	115 °C				
Min. operating temp.	−20 °C				
Protection EN 60529	IP20 when mounted				
Mass	≈ 0.13 kg	≈ 0.13 kg			
Valid for ID	811811-xx	811814-xx			

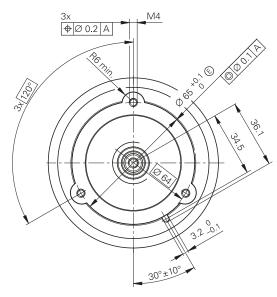
^{*} Please select when ordering


1) Velocity-dependent deviations between the absolute and incremental signals


ECI/EQI 1300 series


Absolute rotary encoders

- Mounting-compatible to photoelectric rotary encoders with 07B stator coupling
- **OYA flange for axial mounting**
- Blind hollow shaft. Ø 12.7 mm 44C
- Without integral bearing
- · Cost-optimized mating dimensions upon request



Required mating dimensions

D1	D2
Ø 12.7G6 ©	Ø 12.7h6 ©

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

■ = Bearing of mating shaft

(M) = Measuring point for operating temperature

(w) = Measuring point for vibration, see also D 741714

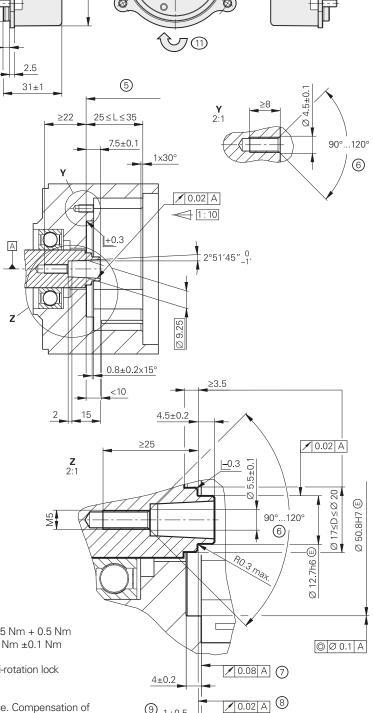
= 16-pin PCB connector

= Screw plug width A/F 3 and 4, tightening torque 5 Nm + 0.5 Nm

3 = Screw, ISO 6912 - M5x30 - 08.8 - MKL SW4, tightening torque 5 Nm + 0.5 Nm

= Screw, ISO 4762 - M4x10 - 8.8 - MKL SW3, tightening torque 2 Nm ±0.1 Nm

= Functional diameter of taper for ECN/EQN 13xx


= Chamfer at start of thread is obligatory for materially bonding anti-rotation lock

= Flange surface Exl/resolver; ensure full-surface contact!

= Shaft; ensure full-surface contact!

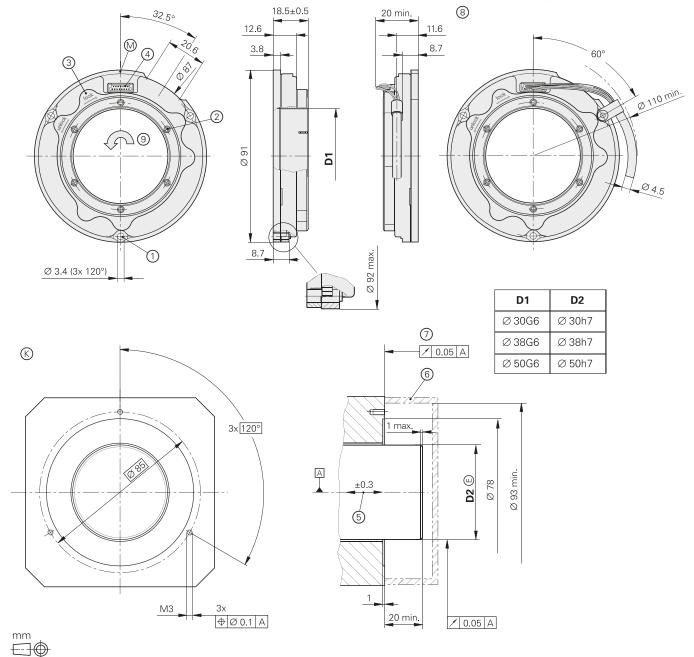
= Maximum permissible deviation between shaft and flange surface. Compensation of mounting tolerances and thermal expansion. ECI/EQI: Dynamic motion permitted over entire range. ECN/EQN: No dynamic motion permitted

11 = Direction of shaft rotation for output signals as per the interface description

9 _{1±0.5}

	Absolute				
	ECI 1319 Safety	EQI 1331 Functional Safety			
Interface	EnDat 2.2				
Ordering designation	EnDat22				
Position values/revolution	524288 (19 bits)				
Revolutions	-	4096 (12 bits)			
Elec. permissible speed/ Deviations	≤ 15000 rpm (for continuous position value)				
Calculation time t _{cal} Clock frequency	≤ 5 μs ≤ 16 MHz				
System accuracy	±65"				
Electrical connection via PCB connector	16-pin with connection for temperature sensor ¹⁾				
Cable length	≤ 100 m				
Voltage supply	DC 3.6 V to 14 V				
Power consumption (max.)	At 3.6 V: ≤ 0.65 W At 14 V: ≤ 0.7 W	At 3.6 V: ≤ 0.75 W At 14 V: ≤ 0.85 W			
Current consumption (typical)	At 5 V: 95 mA (without load)	At 5 V: 115 mA (without load)			
Shaft	Blind hollow shaft for axial clamping Ø 12.7 mm	,			
Mech. permiss. speed n	≤ 15000 rpm	≤ 12000 rpm			
Moment of inertia of rotor	2.6 x 10 ⁻⁶ kgm ²	,			
Permissible axial motion of measured shaft	±0.5 mm				
Vibration 55 Hz to 2000 Hz ²⁾ Shock 6 ms	Stator: ≤ 400 m/s ² ; Rotor: ≤ 600 m/s ² (EN 60068-2 ≤ 2000 m/s ² (EN 60068-2-27)	-6)			
Max. operating temp.	115 °C				
Min. operating temp.	_40 °C				
Trigger threshold of error message for excessive temperature	130 °C (measuring accuracy of internal temperature sensor: ±1 K)				
Protection EN 60529	IP20 when mounted				
Mass	≈ 0.13 kg				
Valid for ID	810661-xx	810662-xx			

1) Evaluation optimized for KTY 84-130
2) 10 Hz to 55 Hz constant over distance 4.9 mm peak to peak


Functional safety available. For dimensions and specifications see the Product Information document

ECI/EBI 100 series

Absolute rotary encoders

- Flange for axial mounting
- Hollow through shaft
- · Without integral bearing
- EBI 135: Multiturn function via battery-buffered revolution counter

■ = Bearing of mating shaft

Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

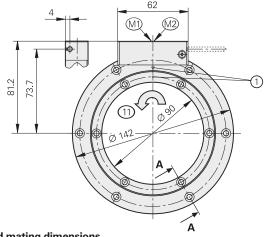
© = Required mating dimensions

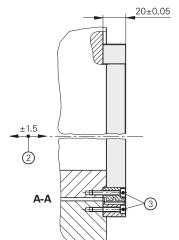
- 1 = Cylinder head screw ISO 4762-M3 with ISO 7092 (3x) washer. Tightening torque 0.9 Nm ±0.05 Nm
- 2 = Width A/F 2.0 (6x). Evenly tighten crosswise with increasing tightening torque; final tightening torque 0.5 Nm ±0.05 Nm
- 3 = Shaft detent: For function, see Mounting Instructions
- 4 = 15-pin PCB connector
- 5 = Compensation of mounting tolerances and thermal expansion, not dynamic motion
- 6 = Protection against contact as per EN 60 529
- 7 = Required up to max. Ø 92 mm
- 8 = Required mounting frame for output cable with cable clamp (accessory). Bending radius of connecting wires min. R3
- 9 = Direction of shaft rotation for output signals as per the interface description

	Absolute			
	ECI 119		EBI 135	
Interface*	EnDat 2.1	EnDat 2.2	EnDat 2.2	
Ordering designation	EnDat01	EnDat22 ¹⁾	EnDat22 ¹⁾	
Position values/revolution	524288 (19 bits)		I	
Revolutions	-		65536 (16 bits) ²⁾	
Elec. permissible speed/ Deviation ³⁾	≤ 3000 rpm/±128 LSB ≤ 6000 rpm/±256 LSB	≤ 6000 rpm (for continuo	ous position value)	
Calculation time t _{cal} Clock frequency	≤ 8 μs ≤ 2 MHz	≤ 6 μs ≤ 16 MHz		
Incremental signals	∼ 1 V _{PP}	-	-	
Line count	32	-	-	
Cutoff frequency –3 dB	≥ 6 kHz typical	_	_	
System accuracy	±90"			
Electrical connection via PCB connector	15-pin	15-pin with connection fo	or temperature sensor ⁵⁾	
Voltage supply	DC 3.6 V to 14 V		Rotary encoders U _P : Buffer battery U _{BAT} :	DC 3.6 V to 14 V DC 3.6 V to 5.25 V
Power consumption (max.)	3.6 V: ≤ 0.58 W Normal operation at 3 Normal operation at 3			
Current consumption (typical)	5 V: 80 mA (without load)	5 V: 75 mA (without load)	Normal operation at 5 V: Buffer mode ⁴⁾ :	75 mA (without load) 25 μA (with rotating shaft) 12 μA (at standstill)
Shaft*	Hollow through shaft D =	= 30 mm, 38 mm, 50 mm		
Mech. permiss. speed n	≤ 6000 rpm			
Moment of inertia of rotor	$D = 30 \text{ mm}: 64 \times 10^{-6} \text{ kg}$ $D = 38 \text{ mm}: 58 \times 10^{-6} \text{ kg}$ $D = 50 \text{ mm}: 64 \times 10^{-6} \text{ kg}$	gm ² gm ² gm ²		
Permissible axial motion of measured shaft	±0.3 mm			
Vibration 55 Hz to 2000 Hz ⁶⁾ Shock 6 ms	≤ 300 m/s ² (EN 60068- ≤ 1000 m/s ² (EN 60068-	2-6) 2-27)		
Max. operating temp.	115 °C			
Min. operating temp.	_30 °C			
Protection EN 60529	IP20 when mounted ⁷⁾			
Mass	D = 30 mm: ≈ 0.19 kg D = 38 mm: ≈ 0.16 kg D = 50 mm: ≈ 0.14 kg			
Valid for ID	823406-xx	823407-xx	823405-xx	
* Please select when ordering				

Please select when ordering
 Valuation numbers are not supported
 Compliance with the EnDat specification 297403 and the EnDat Application Notes 722024, Chapter 13, Battery-buffered encoders, is required for correct control of the encoder. 3) Velocity-dependent deviations between the absolute and incremental signals 4) At T = 25 °C; U_{BAT} = 3.6 V

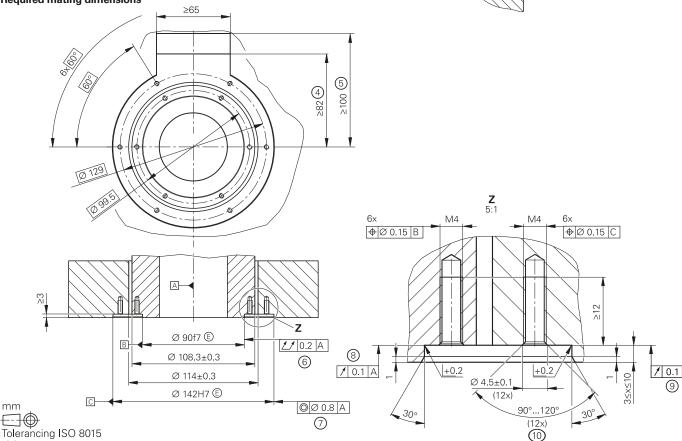
Evaluation optimized for KTY 84-130
 10 to 55 Hz constant over distance 4.9 mm peak


⁷⁾ CE compliance of the complete system must be ensured by taking the correct measures during installation.


ECI 4010, EBI 4010, ECI 4090S

Rotary encoders for absolute position values

- Rugged inductive scanning principle
- Hollow through shaft Ø 90 mm
- EBI 4010: Multiturn function through battery-buffered revolution counter
- Consists of scanning unit and scale drum



(10)

Required mating dimensions

M1 = Measuring point for operating temperature on housing

M2 = Measuring point for vibration on housing

= Datum position ±5°

2 = Maximum permissible axial deviation between shaft and flange surfaces. Compensation of mounting tolerances and thermal expansion. Dynamic motion permitted over entire range.

- 3 = Use screws with material bonding anti-rotation lock, ISO 4762 - M4 x 25 - 8.8 - MKL as per DIN 267-27 (not included in delivery, ID 202264-88). Tightening torque 2.2 Nm ±0.13 Nm
- = Space required when encoder cover is closed
- = Space required for opening the encoder cover
- 6 = Total runout of mating shaft
- = Coaxiality of stator mating surface
- 8 = Bearing surface of rotor
- = Bearing surface of stator
- 10 = Chamfer is obligatory at start of thread for materially bonding anti-rotation lock
- 11 = Direction of shaft rotation for output signals according to interface description

mm

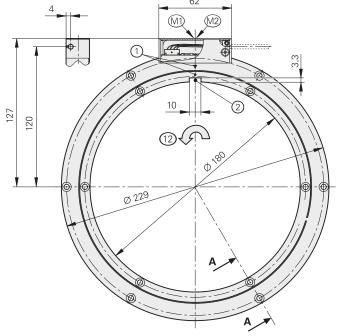
ISO 2768 - m H < 6 mm: ±0.2 mm

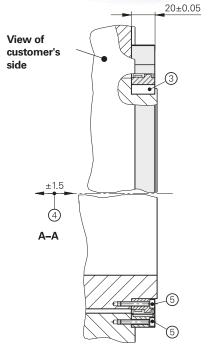
Specifications	ECI 4010 – Singleturn	Functional Safety	EBI 4010 – Multiturn	Functional Safety	ECI 4090 S – Singleturn	Functional Safety	
Interface/ordering designation	EnDat 2.2/EnDat22				DRIVE-CLiQ/D	DRIVE-CLiQ/DQ01	
Position values/revolution	1048576 (20 b	its)			I		
Revolutions	_		65 536 (16 bits	s)	_	-	
Calculation time t _{cal} /clock frequency	≤ 5 µs/≤ 16 Mł	≤ 5 µs/≤ 16 MHz			≤ 11 µs ¹⁾		
System accuracy	±25"				I		
Electrical connection via PCB connector	15-pin with cor	15-pin with connection for temperature sensor ²⁾					
Cable length	≤ 100 m (see E Encoders brock		n in the <i>Interface</i> .	s of HEIDENHAIN	≤ 40 m ³⁾ (See the brochure <i>I</i> . <i>HEIDENHAIN</i>	nterfaces of	
Voltage supply	DC 3.6 V to 14 V		up to 36 V pos	DC 24 V (10 V to 28.8 V); up to 36 V possible without compromising functional safety			
Power consumption ⁴⁾ (maximum)				At 10 V: ≤ 1100 mW; At 28.8 V: ≤ 1250 mW			
Current consumption (typical)	At 5 V: 95 mA (without load) Normal operation at 5 V: 95 mA (without load) Buffer mode ⁵⁾ : 220 μA (rotating shaft) 25 μA (shaft at standstill)		At 24 V: 40 mA	A (without load)			
Shaft	Hollow through	n shaft Ø 90 mm					
Speed	≤ 6000 rpm						
Moment of inertia of rotor	4.26 x 10 ⁻⁴ kgr	m ² (without screv	ws)				
Angular acceleration of rotor	$\leq 2 \times 10^4 \text{ rad/s}^2$	2					
Axial motion of measured shaft	≤ ±1.5 mm						
Vibration 55 to 2000 Hz ⁶⁾ Shock 6 ms	AE scanning ui ≤ 2000 m/s² (E	nit: ≤ 400 m/s²; 7 EN 60068-2-27)	TTR scale drum: :	≤ 600 m/s ² (EN 60	068-2-6)		
Operating temperature	-40 °C to 115 °C (at the measuring point and the entire scale drum)		-40 °C to 100 (at the measurentire scale dr	ring point and the			
Trigger threshold of error message for excessive temperature			120 °C (measu internal tempe ±1 K)	uring accuracy of erature sensor:			
Protection EN 60529	Complete encoder in mounted condition: IP20 ⁷⁾ ; Scanning unit: IP40 (see Insulation under Electrical safety in the brochure Interfaces of HEIDENHAIN Encoders)					on under	
Mass	AE scanning unit: ≈ 0.27 kg; TTR scale drum: ≈ 0.17 kg						
		AE ECI4010 scanning unit: AE EBI4010 scanning unit: D 1130167-xx ID 1130173-xx		AE ECI4090S ID 1130171-02	scanning unit:		
	TTR EXI4000 scale drum: ID 1130175-xx						

¹⁾ Computing time TIME_MAX_ACTVAL
2) See *Temperature measurement in motors* in the brochure *Encoders for Servo Drives*3) With output cable length (inside the motor) ≤ 1 m
4) 2 Computing time TIME_MAX_ACTVAL

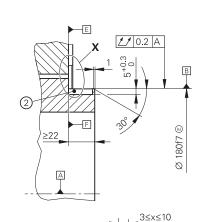
⁴⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders*5) At T = 25 °C; U_{Bat} = 3.6 V
6) AE: 10 Hz to 55 Hz constant over 6.5 mm distance peak to peak; ; TTR: 10 Hz to 55 Hz constant over 10 mm distance peak to peak

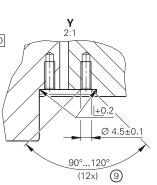
⁷⁾ The encoder must be protected in use against abrasive and harmful media. Use an appropriate enclosure if required.

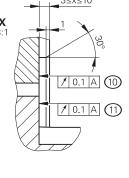

Functional safety available. For dimensions and specifications see the Product Information document


ECI 4010, EBI 4010, ECI 4090S

Rotary encoders for absolute position values


- Rugged inductive scanning principle
- Hollow through shaft Ø 180 mm
- EBI 4010: Multiturn function through battery-buffered revolution counter
- Consists of scanning unit and scale drum




Required mating dimensions В +0.2 Ø 205±0 Ø 197.5±0.3 (8) (9) 0.8 A

-D = 0.05 B M4 ФØ 0.15 F B D

- M1 = Measuring point for operating temperature
- = Mark for 0° position ±5°
- = Slot for machine key DIN 6885-A-10x8x20 2
- = Machine key as per DIN 6885-A-10x8x20
- 4 = Maximum permissible axial deviation between shaft and flange surfaces. Compensation of mounting tolerances and thermal expansion. Dynamic motion permitted over entire range.
- = Mounting screws: ISO 4762-M4x25-8.8. Tightening torque 2.2 Nm ±0.13 Nm. A suitable anti-rotation lock is to be used for the screw connection (e.g. screw with material bonding anti-rotation lock, ISO 4762-M4x25-8.8 MKL as per DIN 267-27 ID 202264-88).
- = Space required when encoder cover is closed
- = Space required when encoder cover is open
- 8 = Coaxiality of stator mating surface
- = Chamfer at start of thread is obligatory for materially bonding anti-rotation lock
- = Bearing surface of stator
- 11 = Bearing surface of rotor
- = Direction of shaft rotation for output signals as per the interface description

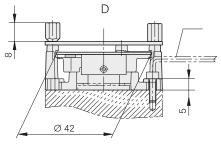
Specifications	ECI 4010 – Singleturn Safety	EBI 4010 – Multiturn Functional Safety	ECI 4090 S – Singleturn Functional Safety		
Interface/ordering designation	EnDat 2.2/EnDat22	DRIVE-CLiQ/DQ01			
Position values/revolution	1048576 (20 bits)				
Revolutions	-	65 536 (16 bits)	-		
Calculation time t _{cal} /clock frequency	≤ 5 µs/≤ 16 MHz		≤ 11 µs ¹⁾		
System accuracy	±40"				
Electrical connection via PCB connector	15-pin with connection for temp	perature sensor ²⁾			
Cable length	≤ 100 m (see EnDat description Encoders brochure)	in the <i>Interfaces of HEIDENHAIN</i>	≤ 40 m ³⁾ (See description in the brochure <i>Interfaces of HEIDENHAIN Encoders</i>)		
Voltage supply	DC 3.6 V to 14 V		DC 24 V (10 V to 28.8 V); up to 36 V possible without compromising functional safety		
Power consumption ⁴⁾ (maximum)	At 3.6 V: ≤ 630 mW; At 14 V: ≤ 7	At 10 V: ≤ 1100 mW; At 28.8 V: ≤ 1250 mW			
Current consumption (typical)	At 5 V: 95 mA (without load)	Normal operation at 5 V: 95 mA (without load) Buffer mode ⁵⁾ : 220 μA (rotating shaft) 25 μA (shaft at standstill)	At 24 V: 40 mA (without load)		
Shaft	Hollow through shaft Ø 180 mn	Hollow through shaft ∅ 180 mm (with keyway)			
Speed	≤ 6000 rpm				
Moment of inertia of rotor	3.1 x 10 ⁻³ kgm ² (without screws	s, without machine key)			
Angular acceleration of rotor	$\leq 2 \times 10^4 \text{ rad/s}^2$				
Axial motion of measured shaft	≤ ±1.5 mm				
Vibration 55 to 2000 Hz ⁶⁾ Shock 6 ms	AE scanning unit: ≤ 400 m/s 2 ; 7 ≤ 2000 m/s 2 (EN 60068-2-27)	TR scale drum: ≤ 600 m/s ² (EN 60	068-2-6)		
Operating temperature	–40 °C to 115 °C (at the measuredrum)	-40 °C to 100 °C (at the measuring point and the entire scale drum)			
Trigger threshold of error message for excessive temperature	130 °C (measuring accuracy of internal temperature sensor: ±1 K)		120 °C (measuring accuracy of internal temperature sensor: ±1 K)		
Protection EN 60529	Complete encoder in mounted condition: IP20 ⁷⁾ ; Scanning unit: IP40 (see Insulation under Electrical safety in the brochure Interfaces of HEIDENHAIN Encoders)				
Mass	AE scanning unit: ≈ 0.39 kg; TTR scale drum: ≈ 0.33 kg				
Consisting of	AE ECI4010 scanning unit: ID 1087526-xx	AE EBI4010 scanning unit: ID 1097530-xx	AE ECI4090S scanning unit: ID 1087527-xx		
	TTR EXI4000 scale drum: ID 1113606-xx				

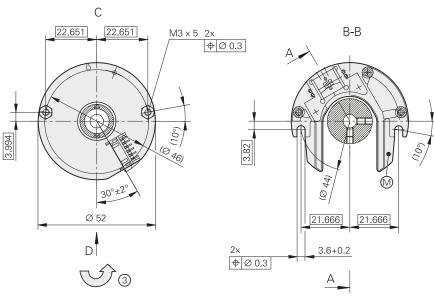
¹⁾ Computing time TIME_MAX_ACTVAL
2) See Temperature measurement in motors in the brochure Encoders for Servo Drives

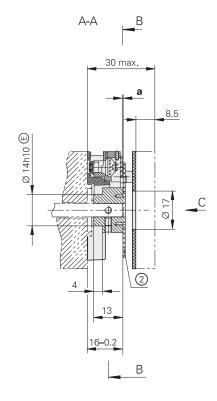
³⁾ With output cable length (inside the motor) ≤ 1 m

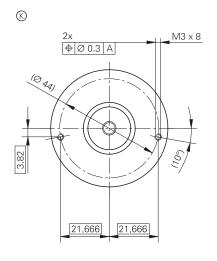
⁴⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders*5) At T = 25 °C; U_{Bat} = 3.6 V
6) AE: 10 Hz to 55 Hz constant over 6.5 mm distance peak to peak; ; TTR: 10 Hz to 55 Hz constant over 10 mm distance peak to peak

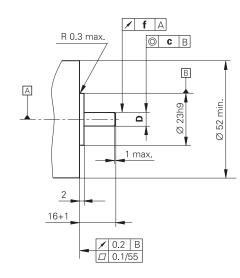
⁷⁾ The encoder must be protected in use against abrasive and harmful media. Use an appropriate enclosure if required.


Functional safety available. For dimensions and specifications see the Product Information document


ERO 1200 series


Incremental rotary encoders


- Flange for axial mounting
- Hollow through shaft
- Without integral bearing



Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm **D**Ø 10h6 €
Ø 12h6 €

■ = Bearing

mm

© = Required mating dimensions

1 = Circular scale with hub

2 = Offset screwdriver as per ISO 2936 – 2.5 (I₂ shortened)

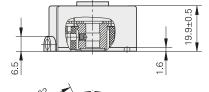
3 = Direction of shaft rotation for output signals as per the interface description

	Z	а	f	С
ERO 1225	1024	0.4 ±0.2	0.05	Ø 0.02
	2048	0.2 ±0.05		
ERO 1285	1024 2048	0.2 ±0.03	0.03	Ø 0.02

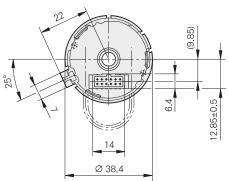
	Incremental			
	ERO 1225	ERO 1285		
Interface	ГШПІ	∼1 V _{PP}		
Line count*	1024 2048			
Accuracy of graduation ²⁾	±6"			
Reference mark	One			
Output frequency Edge separation <i>a</i> Cutoff frequency –3 dB	≤ 300 kHz ≥ 0.39 μs -	_ _ _ ≥ 180 kHz typical		
System accuracy ¹⁾	1024 lines: ±92" 2048 lines: ±73"	1024 lines: ±67" 2048 lines: ±60"		
Electrical connection via PCB connector	12-pin			
Voltage supply	DC 5V ±0.5V			
Current consumption (without load)	≤ 150 mA			
Shaft*	Hollow through shaft D = 10 mm or D = 12 mm			
Moment of inertia of rotor	Shaft diameter \varnothing 10 mm: 2.2 x 10^{-6} kgm ² Shaft diameter \varnothing 12 mm: 2.2 x 10^{-6} kgm ²			
Mech. permiss. speed n	≤ 25000 rpm			
Permissible axial motion of measured shaft	1024 lines: ±0.2 mm 2048 lines: ±0.05 mm	±0.03 mm		
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)			
Max. operating temp.	100 °C			
Min. operating temp.	-40 °C			
Protection EN 60529	IP00 ³⁾			
Mass	≈ 0.07 kg			
Valid for ID	1037519-xx	1037520-xx		

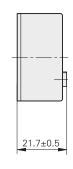
^{*} Please select when ordering

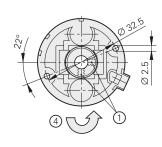
1) Before installation. Additional errors caused by mounting inaccuracy and inaccuracy from the bearing of the drive shaft are not included

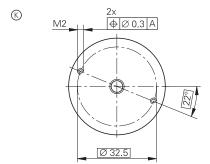

2) For other errors, see *Measuring accuracy*3) CE compliance of the complete system must be ensured by taking the correct measures during installation.

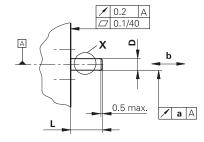
ERO 1400 series

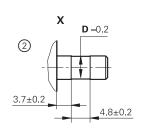

Incremental rotary encoders

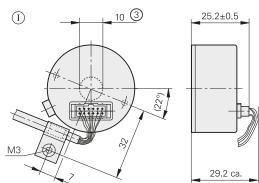

- Flange for axial mounting
- Hollow through shaft
- · Without integral bearing; self-centering

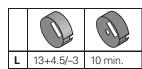





With axial PCB connector






10 ③ 26.2±0.5 (II) 0.9±0.1

Axial PCB connector and round cable

Axial PCB connector and ribbon cable

mm Tolerancing ISO 8015 ISO 2768 - m H

< 6 mm: ±0.2 mm

Α	=	Bearing	of	mating	shaft

© = Required mating dimensions

O = Accessory: Round cable

1 = Setscrew 2x90° offset M3 SW1.5 Md = 0.25 Nm ±0.05 Nm 2 = Version for repeated mounting

3 = Version featuring housing with central hole (accessory)
4 = Direction of shaft rotation for output signals as per the interface description

L	13+4.5/-3	10 min.

Bend radius R	Fixed cable	Frequent flexing		
Ribbon cable	R≥2mm	R ≥ 10 mm		

	а	b
ERO 1420	0.03	±0.1
ERO 1470	0.02	±0.05
ERO 1480		

D
Ø 4h6 🗈
Ø 6h6 🗈
Ø 8h6 ©

	Incremental									
	ERO 1420	ERO 1470				ERO 1480				
Interface						∼1 V _{PP}				
Line count*	512 1000 1024	1000 1500				512 1000 1024				
Integrated interpolation*	_	5-fold	10-fold	_						
Signal periods/revolution	512 1000 1024	5000 7500								
Edge separation a	≥ 0.39 µs	≥ 0.47 µs	≥ 0.22 µs	≥ 0.17 µs	≥ 0.07 µs	-				
Scanning frequency	≤ 300 kHz	≤ 100 kHz		≤ 62.5 kHz	≤ 100 kHz	_				
Cutoff frequency –3 dB	-					≥ 180 kHz				
Reference mark	One									
System accuracy ¹⁾	512 lines: ±139" 1000 lines: ±112" 1024 lines: ±112"	1000 lines: ±				512 lines: ±190" 1000 lines: ±163" 1024 lines: ±163"				
Electrical connection via PCB connector	12-pin, axial ³⁾									
Voltage supply	DC 5 V ±0.5 V	DC 5 V ± 0.2	25 V			DC 5V ± 0.5V				
Current consumption (w/o load)	≤ 150 mA	≤ 155 mA		≤ 200 mA		≤ 150 mA				
Shaft*	Blind hollow shaft I or hollow through sha									
Moment of inertia of rotor	Shaft diameter Ø 4 r. Shaft diameter Ø 6 r. Shaft diameter Ø 8 r.	nm: 0.28 x 10 nm: 0.27 x 10 nm: 0.25 x 10	⁻⁶ kgm ² - ⁶ kgm ² - ⁶ kgm ²							
Mech. permiss. speed n	≤ 30000 rpm									
Permissible axial motion of measured shaft	±0.1 mm	±0.05 mm								
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 600 \leq 1000 m/s ² (EN 600)68-2-6))68-2-27)								
Max. operating temp.	70 °C									
Min. operating temp.	−10 °C	-10 °C								
Protection EN 60529		With PCB connector: IP00 ²⁾ With cable outlet: IP40								
Mass	≈ 0.07 kg									
Valid for ID	360731-xx	360736-xx				360737-xx				

Bold: These preferred versions are available on short notice

Please select when ordering

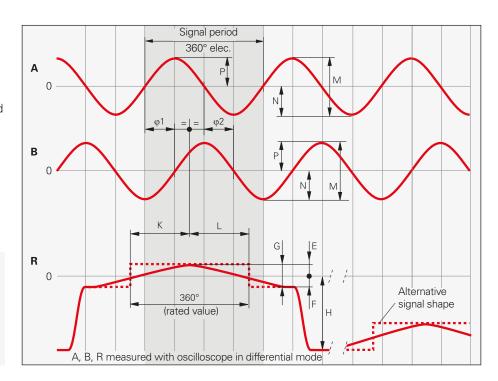
Please select when ordering

Before installation. Additional errors caused by mounting inaccuracy and inaccuracy from the bearing of the drive shaft are not included CE compliance of the complete system must be ensured by taking the correct measures during installation.

Cable 1 m, radial, without connecting element (not with ERO 1470) upon request

Interfaces

Incremental signals \sim 1 V_{PP}


HEIDENHAIN encoders with \sim 1 V_{PP} interface provide voltage signals that can be highly interpolated.

The sinusoidal incremental signals A and B are phase-shifted by 90° elec. and have amplitudes of typically 1 V_{PP}. The illustrated sequence of output signals—with B lagging A—applies for the direction of motion shown in the dimension drawing. The **reference mark signal** R has an unambiguous assignment to the incremental signals. The output signal might be somewhat lower next to the reference mark.

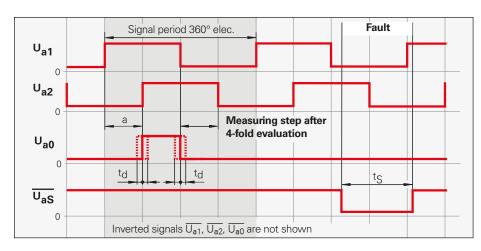
(For more information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders brochure.

Pin lavout

M23 cou	pling, 12-	pin	<u> </u>	D-sub c	onnecto	, 15-pin,	for PWM	21	PCB coi	nnector, 1	I2-pin		
			9 8 10 12 7 11 6 4 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15				12					
	Voltage supply				Incremental signals						Othe	er signals	
-	12	2	10	11	5	6	8	1	3	4	9	7	/
	4	12	2	10	1	9	3	11	14	7	5/6/8/15	13	/
1 2	2a	2b	1a	1b	6b	6a	5b	5a	4b	4a	3b	3a	/
	U _P	Sensor ¹⁾	0 V	Sensor ¹⁾	A+	A –	B+	B-	R+	R–	Vacant	Vacant	Vacant
	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	/	Violet	Yellow

	Output cable for ERN 1381 n the motor				M23 flange socket,					PCB connector, 12-pin				
	ID 667343-01						(10-16	5 13 2 5 14 3 6 5 17 6 4		12	1 2 3	a 4 5 6		
		Voltage	supply			!	Incremen	tal signals	6			Other sig	ınals	
	7	1	10	4	15	16	12	13	3	2	5	6	8/9/11/ 14/17	
E 12	2a	2b	1a	1b	6b	6a	5b	5a	4b	4a	/	/	3a/3b	
	U _P	Sensor Up	0 V •──	Sensor 0V	A+	A –	B+	B-	R+	R–	T+ ²⁾	T _ ²⁾	Vacant	
	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Brown ²⁾	White ²⁾	/	

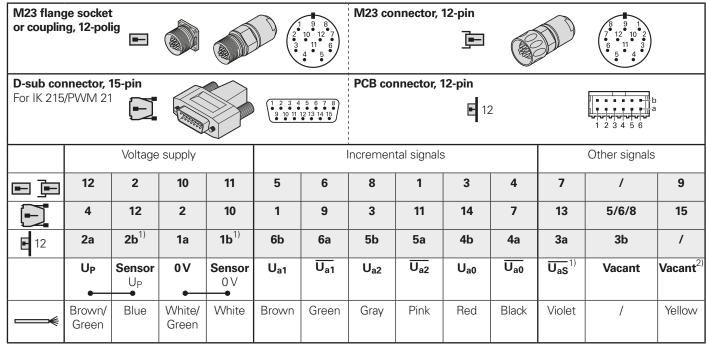

Cable shield connected with housing; U_P = Power supply; 1) LIDA 2xx: vacant; 2) Only for output cable inside the motor housing **Sensor:** The sensor line is connected in the encoder with the corresponding power line. Vacant pins or wires must not be used.

Incremental signals TLITTL

HEIDENHAIN encoders with TLITTL interface incorporate electronics that digitize sinusoidal scanning signals with or without interpolation.

The **incremental signals** are transmitted as the square-wave pulse trains U_{a1} and U_{a2} , phase-shifted by 90° elec. The **reference mark signal** consists of one or more reference pulses U_{a0} , which are gated with the incremental signals. In addition, the integrated electronics produce their **inverse signals** $\overline{U_{a1}}$, $\overline{U_{a2}}$ and $\overline{U_{a0}}$ for noise-proof transmission. The illustrated sequence of output signals—with U_{a2} lagging U_{a1} —applies to the direction of motion shown in the dimension drawing.

The **fault detection signal** $\overline{U_{aS}}$ indicates fault conditions such as an interruption in the supply lines, failure of the light source, etc.



The distance between two successive edges of the incremental signals U_{a1} and U_{a2} through 1-fold, 2-fold or 4-fold evaluation is one **measuring step**.

For more information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Pin layout

Cable shield connected to housing; UP = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used.

1) **ERO 14xx:** vacant

²⁾ **Exposed linear encoders:** TTL/11 μ A_{PP} switchover for PWT, otherwise vacant

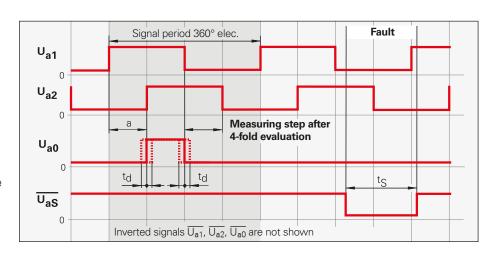
Pin layout

,														
Output co		RN 1321		M23 flange socket, 17-pin					PCB connector, 12-pin					
	D 667343-01					10° 16° 13° 2 9° 15° 14° 3 7° 6 ° 5						1 2 3 4 5 6		
		Voltage	supply			1	Incremen	tal signals	5			Other signals		
=	7	1	10	4	15	16	12	13	3	2	5	6	8/9/11/ 14/17	
E 12	2a	2b	1a	1b	6b	6a	5b	5a	4b	4a	/	/	3a/3b	
	U _P	Sensor UP	0 V	Sensor 0V	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	T+ ¹⁾	T – ¹⁾	Vacant	
-	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Brown ¹⁾	White ¹⁾	/	

ERN 421 pin lavout

Eniv 42 i pin layout													
Binder fla	nge socke	et, 12-pin											
	A L D A A B C D A A A A A A A A A A A A A A A A A A												
	Voltage supply Incremental signals Other sig											signals	
▣	M	В	K	L	E	F	Н	Α	С	D	G	J	
	U _P	Sensor Up	0 V	Sensor 0 V	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U _{aS}	Vacant	
	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Violet	Yellow	

Cable shield connected to housing; U_P = Power supply voltage
Sensor: The sensor line is connected in the encoder with the corresponding power line.
Vacant pins or wires must not be used.

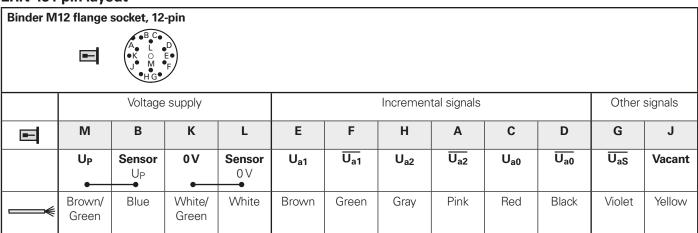

1) Only for cables inside the motor housing

Incremental signals TLI HTL, HTLs

HEIDENHAIN encoders with TLI HTL interface incorporate electronics that digitize sinusoidal scanning signals with or without interpolation.

The **incremental signals** are transmitted as the square-wave pulse trains U_{a1} and U_{a2} , phase-shifted by 90° elec. The **reference mark signal** consists of one or more reference pulses U_{a0} , which are gated with the incremental signals. In addition, the integrated electronics produce their **inverted signals** $\overline{U_{a1}}$, $\overline{U_{a2}}$ and $\overline{U_{a0}}$ for noise-proof transmission (not with HTLs). The illustrated sequence of output signals—with U_{a2} lagging U_{a1} —applies to the direction of motion shown in the dimension drawing.

The **fault detection signal** $\overline{U_{aS}}$ indicates fault conditions, for example a failure of the light source.



The distance between two successive edges of the incremental signals U_{a1} and U_{a2} through 1-fold, 2-fold or 4-fold evaluation is one **measuring step**.

For more information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

ERN 431 pin layout

Cable shield connected to housing; Up = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used.

Commutation signals for block commutation

The block commutation signals U, V and W are derived from three separate absolute tracks. They are transmitted as square-wave signals in TTL levels.

The ERN 1x23 and ERN 1326 are rotary encoders with commutation signals for block commutation.

() For more information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders

ERN 1123, ERN 1326 pin layout

M23 flange so 17-pin	cket,		11.0 1 10° 16 13° 2 9° 15° 14° 3 8° 17° 6	1 1 1 1 1 1	ector, 16-pin	2 3 4 5 6 7 8	PCB connector, 15-pin 15 13 11 9 7 5 3 1 15 14 12 10 8 6 4 2					
	\	oltage supp	ly		Incremental signals							
■	7	1	10	11	15	16	12	13	3	2		
E 16	1b	2b	1a	1	5b	5a	4b	4a	3b	3a		
E 15	13	1	14	/	1	2	3	4	5	6		
	U _P	Sensor U _P	0 V	Internal shield	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}		
	Brown/ Green	Blue	White/ Green	/	Green/ Black	Yellow/ Black	Blue/Black	Red/Black	Red	Black		

		Other signals											
=	4	5	6	14	17	9	8						
E 16	2a	8b	8a	6b	6a	7b	7a						
E 15	/	7	8	9	10	11	12						
	U _{aS}	U	Ū	V	V	W	W						
──	White	Green	Brown	Yellow	Violet	Gray	Pink						

Cable shield connected to housing $\mathbf{U}_{\mathbf{P}}$ = Power supply voltage Sensor: The sensor line is connected in the encoder with the corresponding power line. Vacant pins or wires must not be used.

Pin layout for ERN 1023

	4 C 1 O 1 E														
	Voltage	supply		Incremental signals						Other signals					
	U _P	0 V	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U	Ū	V	V	W	W	
──	White	Black	Red	Pink	Olive Green	Blue	Yellow	Orange	Beige	Brown	Green	Gray	Light Blue	Violet	

Cable shield connected to housing

 $\mathbf{U_P} = \text{Power supply voltage}$

Vacant pins or wires must not be used.

Commutation signals for sinusoidal commutation

The commutation signals C and D are taken from the Z1 track, and are equal to one sine or cosine period per revolution. They have a signal amplitude of typically 1 V_{PP} at 1 $k\Omega$.

The input circuitry of the subsequent electronics is the same as for the \sim 1 V_{PP} interface. The required terminating resistance Z_0 , however, is 1 k Ω instead of 120 Ω .

The ERN 1387 is a rotary encoder with output signals for sinusoidal commutation.

(igsim) For more information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders

Pin layout

M23 coup or flange 17-pin							110 10 16 9 9 15 0 17 0 6	14 3	PCB conn	ector, 14-p	■ ■ b ■ ■ a
		Voltage	supply					Incremen	tal signals		
	7	1	10	4	11	15	16	12	13	3	2
E	1b	7a	5b	3a	/	6b	2a	3b	5a	4b	4a
	U _P	Sensor Up	0 V	Sensor 0 V	Internal shield	A+	A –	B+	B-	R+	R-
\	Brown/ Green	Blue	White/ Green	White	/	Green/ Black	Yellow/ Black	Blue/Black	Red/Black	Red	Black

		Other signals				
	14	17	9	8	5	6
E	7b	1a	2b	6a	/	/
	C+	C-	D+	D-	T+ ¹⁾	T _ ¹⁾
_	Gray	Pink	Yellow	Violet	Green	Brown

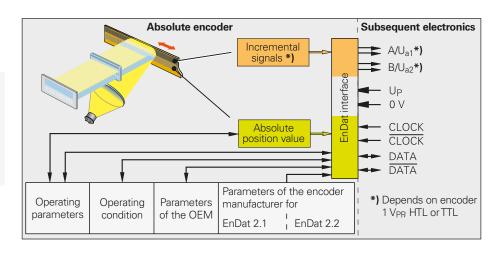
Cable shield connected to housing **U**_P = Supply voltage; **T** = Temperature

Sensor: The sensor line is connected internally with the corresponding power line.

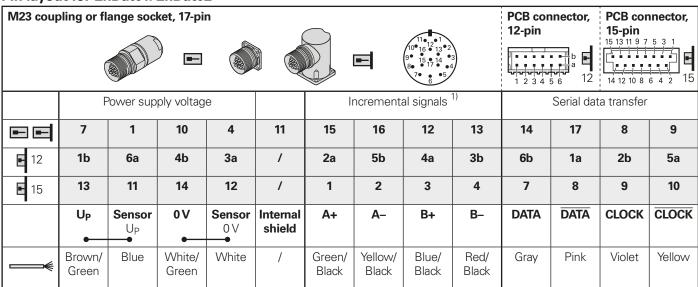
Vacant pins or wires must not be used.

1) Only for cables inside the motor housing

Position values **EnDat**


The EnDat interface is a digital, **bidirectional** interface for encoders. It is capable of transmitting **position values** as well as transmitting or updating information stored in the encoder, or saving new information. Thanks to the **serial transmission method**, only **four signal lines** are required. The DATA is transmitted in **synchronism** with the CLOCK signal from the subsequent electronics. The type of transmission (position values, parameters, diagnostics ...) is selected by mode commands that the subsequent electronics send to the encoder. Some functions are available only with EnDat 2.2 mode commands.

Ordering designation	Command set	Incremental signals
EnDat01 EnDat H EnDat T	EnDat 2.1 or EnDat 2.2	1 V _{PP} HTL TTL
EnDat21		_
EnDat02	EnDat 2.2	1 V _{PP}
EnDat22	EnDat 2.2	-


Versions of the EnDat interface

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Pin layout for EnDat01/EnDat02

	Other	signals
	5	6
12	/	/
E 15	/	/
	T+ ²⁾	T – ²⁾
	Brown ²⁾	White ²⁾

Cable shield connected to housing; **U**_P = Voltage supply; **T** = Temperature

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used.

Only with ordering designations EnDat 01 and EnDat 02

²⁾ Only for cables inside the motor housing

EnDat22 pin lavout

	piii iayou	<u> </u>								
M12 coup flange soo 8-pin					6 5 4 7 8 3 1 • • 2		M23 Speed right-angle socket, 9-p	flange		8 1 7 9 2 6 5 4
PCB conn	ector, 16-pi	b — • • • • • • • • • • • • • • • • • •	3 4 5 6 8 9	16			PCB 15-pi	connector, n	15 13 11 9 7 9	
		Power	supply			Serial dat	ta transfer		Other	signals
■ M12	8	2	5	1	3	4	7	6	/	/
■ M23	3	7	4	8	5	6	1	2	/	/
E 16	1b	6a	4b	3a	6b	1a	2b	5a	8a	8b
E 15	13	11	14	12	7	8	9	10	5	6
	U _P	Sensor U _P ¹⁾	0 V	Sensor 0 V ¹⁾	DATA	DATA	CLOCK	CLOCK	T+ ²⁾	T - ²⁾
	Brown/ Green	Blue	White/ Green	White	Gray	Pink	Violet	Yellow	Brown	Green

Cable shield connected to housing; $U_P = Power supply voltage; T = Temperature$

Sensor: The sensor line is connected in the encoder with the corresponding power line.

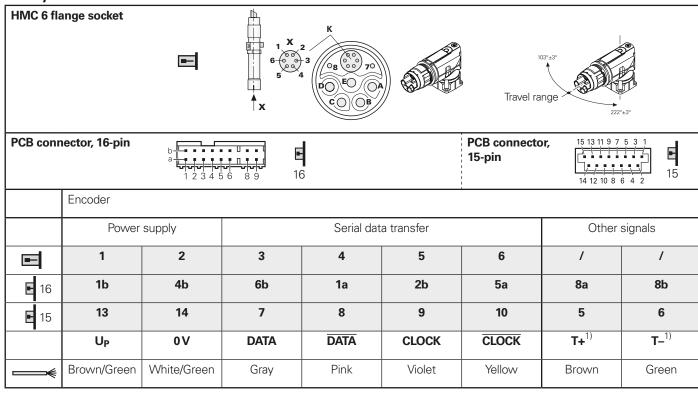
Pin layout for EBI 135/EBI 1135/EBI 4010

PCB connecte	or; 15-pin		€	15	15 13 11 9 7 5 3 14 12 10 8 6 4	. 2				
M12 flange s	ocket, 8-pin	囯		6 5 4 7 • 3 1 • • 2		M23 Spee angle flan socket, 9-p	ge _		7 9 9 6 5	2 3
		Power	supply			Serial dat	a transfer		Other s	ignals ¹⁾
E 15	13	11	14	12	7	8	9	10	5	6
■ M12	8	2	5	1	3	4	7	6	1	1
■ M23	3	7	4	8	5	6	1	2	1	1
	U _P	U _{BAT}	0 V ²⁾	0 V _{BAT} ²⁾	DATA	DATA	CLOCK	CLOCK	T+	T–
-	Brown/ Green	Blue	White/ Green	White	Gray	Pink	Violet	Yellow	Brown	Green

UP = Power supply; **UBAT** = External buffer battery (false polarity can result in damage to the encoder)

Vacant pins or wires must not be used.

1) Only for EBI 135


2) Connected inside encoder

SpeedTEC is a registered trademark of TE Connectivity Industrial GmbH.

Vacant pins or wires must not be used.

1) ECI 1118 EnDat22: Vacant 2) Only EnDat22, except ECI 1118

Pin layout

	Motor						
	Bra	ake			Power		
=	7	8	Α	В	С	D	E
	BRAKE-	BRAKE+	U	V	W	/	PE
_	White	White/Black	Blue	Brown	Black	/	Yellow/ Green

External shield of the encoder output cable on communication element housing K.

Vacant pins or wires must not be used. 1) Except for ECI 1118

DRIVE-CLiQ interface

HEIDENHAIN encoders with the code letter S after the model designation are suited for connection to Siemens controls with **DRIVE-CLiQ** interface

• Ordering designation DQ01

DRIVE-CLiQ is a registered trademark of SIEMENS AG.

(D) For more information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders brochure.

Siemens pin layout

M12 flange s		6 5 7 8 1•	4 4 3 3 2 2		M23 Spee angle flan 9-pin		1	1 6 6	8 1 9 2 9 4 3 5 4	
PCB connect	or, 16-pin	b			PCB conn	ector, 15-pir	1	15 13 11 9	7 5 3 1	
E	16	a L L 1 2 3	4 5 6 8 9		 	E 15		14 12 10 8	3 6 4 2	
		Power	supply			Serial dat	a transfer		Other s	signals ¹⁾
■ M12	8	2	1	5	3	4	7	6	/	1
■ M23	3	7	8	4	5	6	1	2	/	1
I 16	1b	6a	3a	4b	6b	1a	2b	5a	8a	8b
E 15	13	11	12	14	7	8	9	10	5	6
	-	-	U _P	0 V	RXP	RXN	TXP	TXN	T+ ²⁾	T - ²⁾
	Brown/ Green	Blue	White	White/ Green	Gray	Pink	Violet	Yellow	Brown	Green

Cable shield connected to housing; U_P = Power supply voltage

Vacant pins or wires must not be used.

Output cables with a cable length > 0.5 m require strain relief of the cable

Only for cables inside the motor housing

SpeedTEC is a registered trademark of TE Connectivity Industrial GmbH.

²⁾ Connections for external temperature sensor; evaluation optimized for KTY 84-130 (see *Temperature measurement in motors* in the Encoders for Servo Drives brochure

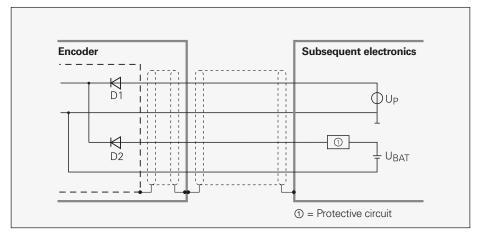
EBI 1135/EBI 135/EBI 4010 – external buffer battery

The multiturn function of the EBI 1135, EBI 135 and EBI 4000 is realized through a revolution counter. To prevent loss of the absolute position information during power failure, the EBI must be operated with an external buffer battery.

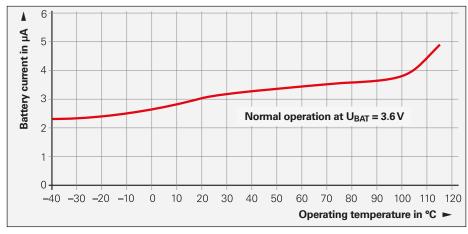
A lithium-thionyl chloride battery with 3.6 V and 1200 mAh is recommended as buffer battery. The typical service life is over nine years (EBI 1135/135) or six years (EBI 4010) under appropriate conditions (two shifts of ten hours each in normal operation; battery temperature 25 °C; typical self-discharging). To achieve this, the main power supply (U_P) must be connected to the encoder while connecting the backup battery, or directly thereafter, in order for the encoder to become fully initialized after having been completely powerless. Otherwise the encoder will consume a significantly higher amount of battery current until main power is supplied the first time.

Ensure correct polarity of the buffer battery in order to avoid damage to the encoder. HEIDENHAIN recommends operating each encoder with its own backup battery.

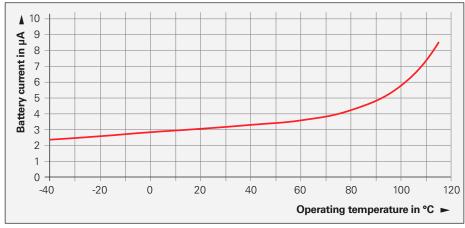
If the application requires compliance with DIN EN 60086-4 or UL 1642, an appropriate protective circuit is required for protection from wiring errors.


If the voltage of the buffer battery falls below certain thresholds, the encoder will set warning or error messages that are transmitted via the EnDat interface:

- "Battery charge" warning ≤ 2.8 V ±0.2 V in normal operating mode
- "M power interruption"
 ≤ 2.2 V ±0.2 V
 in battery buffered operating mode
 (encoder must be re-referenced)

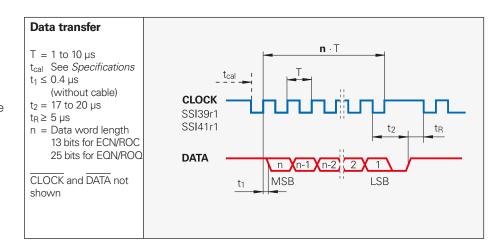

The EBI uses low battery current even during normal operation. The amount of current depends on the operating temperature.

Please note:


Compliance with the EnDat specification 297403 and the EnDat Application Notes 722024, Chapter 13, *Battery-buffered encoders*, is required for correct control of the encoder.

Connection to the buffer battery

EBI 1135/135: Typical discharging current in normal operation (U_B = 3.6 V)

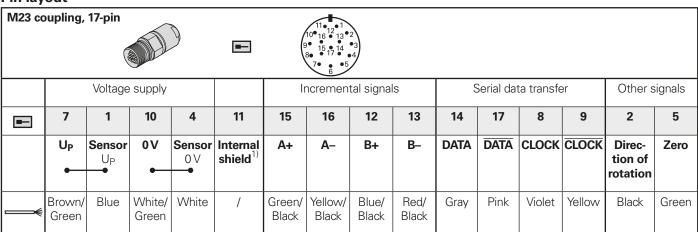

EBI 4010: Typical discharging current in normal operation (UBAT = 3.6 V)

SSI position values

The **position value**, beginning with the most significant bit (MSB), is transferred over the data lines (DATA) in synchronism with a CLOCK signal from the control. The SSI standard data word length for singleturn encoders is 13 bits, and for multiturn encoders 25 bits. In addition to the absolute position values, incremental signals can also be transmitted. For signal description, see 1 V_{PP} Incremental Signals.

The following functions can be activated through programming inputs:

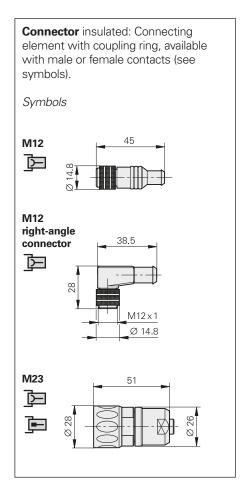
- Direction of rotation
- Zero reset (setting to zero)

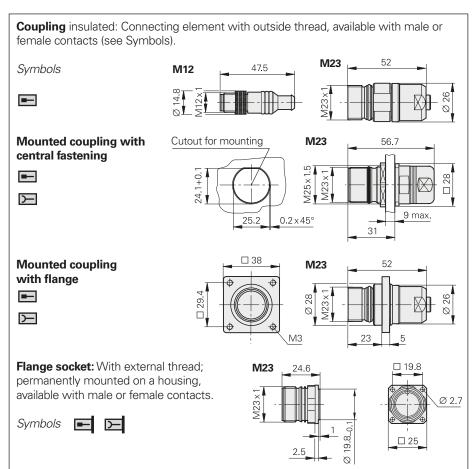


(D) For more information:

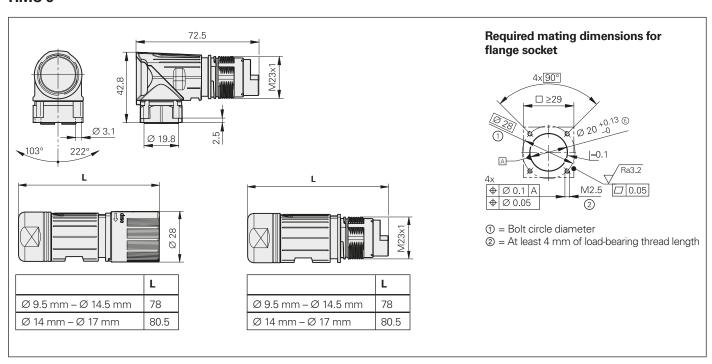
Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders brochure.

Pin layout

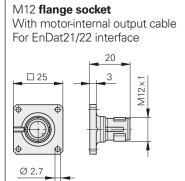

Shield on housing; **Up** = Power supply

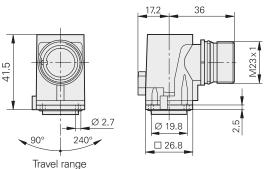

Sensor: With a 5 V supply voltage, the sensor line is connected in the encoder with the corresponding power line.

Vacant for ECN/EQN 10xx and ROC/ROQ 10xx

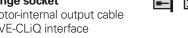

Connecting elements and cables

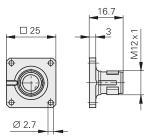
General information and dimensions

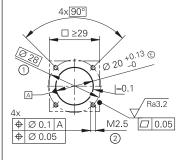


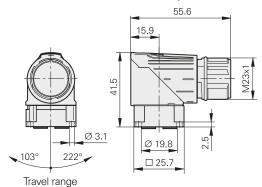

HMC 6




mm
Tolerancing ISO 8015
ISO 2768 - m H
≤ 6 mm: ±0.2 mm

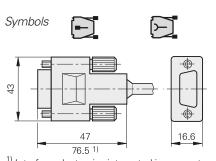





DRIVE-CLiQ is a registered trademark of SIEMENS AG.

Required mating dimensions for M12 and M23 flange sockets

- ① = Bolt circle diameter
- 2 = At least 4 mm of load-bearing thread length


M23 SpeedTEC angle flange socket (rotatable) with motor-internal output cable

Output cables with SpeedTEC right-angle flange socket are always delivered with a mounted O-ring for vibration protection. This makes it possible to use them for a connecting cable with either a threaded connector (with O-ring) or a SpeedTEC connector (O-ring needs to be removed).

SpeedTEC is a registered trademark of TE Connectivity Industrial GmbH.

1) Interface electronics integrated in connector

The **pin numbering** on connectors is in the direction opposite to those on couplings or flange sockets, regardless of whether the connecting elements have

male contacts or

female contacts.

When engaged, the connections provide protection to IP67 (D-sub connector: IP50; EN 60529). When not engaged, there is no protection.

Accessories for flange sockets and M23 mounted couplings

Threaded metal dust cap ID 219926-01

Cables inside the motor housing

Cables inside the Cable diameter: shrink-wrap or be	4.5 mm, 3.7 r	mm or TPE single wire	with	Complete with PCB connector and M23 angle flange socket, 17-pin; wires for temperature sensor are cross-linked polyolefin 2 x 0.25 mm ²	Complete with PCB connector and M23 angle flange socket, 9-pin, wires for temperature sensor are TPE 2 x 0.16 mm ²
	ı				
Rotary encoder	Interface	PCB connector	Crimp sleeve		
ECI 119	EnDat01	15-pin	_	_	-
ECI 119	EnDat22	15-pin	-	-	1120947-xx ^{1) 4)} EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
EBI 135	EnDat22	15-pin	-	_	4 × 0.00 11111
ECI 1119 EQI 1131	EnDat22	15-pin	_	-	-
ECI 1118	EnDat22	15-pin	_	-	-
EBI 1135	EnDat22	15-pin	_	_	_
ECI 1319 EQI 1331	EnDat01	12-pin	Ø 6 mm	332201-xx EPG 16 x 0.06 mm ²	-
	EnDat22	16-pin or 12-pin plus 4-pin	Ø 6 mm	_	1120948-xx ⁴⁾ EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
ECN 1113 EQN 1125	EnDat01	15-pin	Ø 4.5 mm	606079-xx EPG 16 x 0.06 mm ²	_
ECN 1123 EQN 1135	EnDat22	15-pin	Ø 4.5 mm	_	_
ECN 1313 EQN 1325	EnDat01	12-pin	Ø 6 mm	332201-xx EPG 16 x 0.06 mm ²	-

Note: CE compliance in the complete system must be ensured for the output cable. The shielding connection must be realized on the motor.

SpeedTEC is a registered trademark of TE Connectivity Industrial GmbH.

	Table	1
Complete with PCB connector and flange socket, M12, 8-pin (TPC single wires with braided sleeving and without shield, wires for temperature sensor are TPE 2 x 0.16 mm ²	With one PCB connector (free cable end or cable is cut off), wires for TPE temperature sensor, 2 x 0.16 mm ²	Complete for HMC 6 with PCB connector and communication element, wires for TPE temperature sensor, 2 x 0.16 mm ²
		D
With temperature sensor wires ①	With temperature sensor wires ①	
-	640067-xx ¹⁾ EPG 16 x 0.06 mm ²	_
-	825855-xx ¹⁾ EPG 4 x 2 x 0.16 mm ²	1072652-xx ¹⁾ EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
-	1116479-xx ¹⁾ ① EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²	-
1119952-xx ① TPE 8 x 0.16 mm ²	1119958-xx TPE 8 x 0.16 mm ²	1072652-xx ¹⁾ EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
805320-xx TPE 6 x 0.16 mm ²	735784-xx ²⁾ TPE 6 x 0.16 mm ²	
804201-xx TPE 8 x 0.16 mm ²	640055-xx ²⁾ TPE 8 x 0.16 mm ²	-
-	332202-xx EPG 16 x 0.06 mm ²	-
1117280-xx ① TPE 8 x 0.16 mm ²	1108076-xx	1035387-xx EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
	1100199-xx TPE 8 x 0.16 mm ²	
	1143830-xx TPE 8 x 0.16 mm ²	
-	605090-xx EPG 16 x 0.06 mm ²	-
1117412-xx TPE 8 x 0.16 mm ²	1108078-xx ① EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²	1035857-xx EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
-	332202-xx EPG 16 x 0.06 mm ²	-

You can find more information on the HMC 6 in the Product Information document HMC 6.

¹⁾ With cable clamp for shielding connection
2) Single wires with heat-shrink tubing (without shielding)
3) Note max. temperature, see the brochure *Interfaces of HEIDENHAIN Encoders*4) SpeedTEC right-angle flange socket with O-ring for vibration protection, male (for threaded connector with O-ring; for SpeedTEC connector, remove O-ring)

Cables inside the Cable diameter: shrink-wrap or bu	4.5 mm, 3.7 m	ım or TPE single wire	with	Complete with PCB connector and M23 angle flange socket, 17-pin; wires for temperature sensor are cross-linked polyolefin 2 x 0.25 mm ²	Complete with PCB connector and M23 angle flange socket, 9-pin, wires for temperature sensor are TPE 2 x 0.16 mm ²
Rotary encoder	Interface	PCB connector	Crimp sleeve		With temperature sensor wires T
ECN 1324S EQN 1336S	DRIVE-CLiQ	16-pin or 12-pin plus 4-pin	Ø 6 mm	_	1120945-xx ⁴⁾ EPG 2 x (2 x 0.06 mm ²) + 4 x 0.06 mm ²
ECN 1325 EQN 1337	EnDat22	16-pin or 12-pin plus 4-pin	Ø 6 mm	_	1120948-xx ⁴⁾ EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
ERN 1123	ΠL	15-pin	-	_	_
ERN 1321 ERN 1381	TTL 1V _{PP}	12-pin	Ø 6 mm	667343-xx EPG 16 x 0.06 mm ²	-
ERN 1326	ΠL	16-pin	Ø 6 mm	_	_
ERN 1387	1V _{PP}	14-pin	Ø 6 mm	332199-xx EPG 16 x 0.06 mm ²	-
ERO 1225 ERO 1285	TTL 1V _{PP}	12-pin	Ø 4.5 mm	-	-
ERO 1420 ERO 1470 ERO 1480	TTL TTL 1V _{PP}	12-pin	Ø 4.5 mm	_	_
ECI 4010 EBI 4010	EnDat22	15-pin	Ø 4.5 mm	-	1121041-xx ⁴⁾ EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ² 1120940-xx ⁴⁾ T EPG 1 x (4 x 0.06 mm ²) +
ECI 4090S	DRIVE-CLiQ	15-pin	Ø 4.5 mm	_	$4 \times 0.06 \text{ mm}^2$ $1125408 + xx^{4}$ EPG $2 \times (4 \times 0.06 \text{ mm}^2) +$
					4 x 0.06 mm ² 1125403-xx ⁴⁾ ① EPG 2 x (2 x 0.06 mm ²) + 4 x 0.06 mm ²

Note: CE compliance in the complete system must be ensured for the output cable. The shielding connection must be realized on the motor.

DRIVE-CLiQ is a registered trademark of SIEMENS AG. SpeedTEC is a registered trademark of TE connectivity.

With temperature sensor wires 108076-xx	- 1035387-xx EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
108076-xx \bigcirc PG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ² 100199-xx PE 8 x 0.16 mm ²	- 1035387-xx EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
PG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ² 100199-xx PE 8 x 0.16 mm ² 143830-xx	1035387-xx EPG 1 x (4 x 0.06 mm ²) + 4 x 0.06 mm ²
PE 8 x 0.16 mm ²	
PE 8 x 0.16 mm ²	
38976-xx ²⁾ PE 14 x 0.16 mm ²	_
33276-xx PG 16 x 0.06 mm ²	-
41369-xx PG 16 x 0.06 mm ²	-
32200-xx PG 16 x 0.06 mm ²	-
72164-xx ³⁾ UR [4(2 x 0.05 mm ²) + (4 x 0.16 mm ²)]	_
46439-xx ³⁾ UR [4(2 x 0.05 mm ²) + (4 x 0.16 mm ²)]	-
	-
	_
P 4 P 3: P 7: U 4 U	G 16 x 0.06 mm ² 1369-xx G 16 x 0.06 mm ² 2200-xx G 16 x 0.06 mm ² 2164-xx ³⁾ IR [4(2 x 0.05 mm ²) + (4 x 0.16 mm ²)] 6439-xx ³⁾

For more information:

You can find more information on the HMC 6 in the Product Information document HMC 6.

¹⁾ With cable clamp for shielding connection
2) Single wires with heat-shrink tubing (without shielding)
3) Note max. temperature, see the brochure *Interfaces of HEIDENHAIN Encoders*4) SpeedTEC right-angle flange socket with O-ring for vibration protection, male (for threaded connector with O-ring; for SpeedTEC connector, remove O-ring)
5) EPG cable with single-sided shield connection

PUR connecting cable [4(2 x 0.14 mm ²	2) + (4 x 0.5 mm ²)]; A _P = 0.5 mm ²		Ø8 mm	∼1V _{PP} Γ⊔πL
Complete with connector (female), and coupling (male)	<u></u>			298401-xx
Complete with connector (female), and connector (male)	<u></u>			298399-xx
Complete with connector (female) and D-sub connector (female), 15-pin, for TNC	<u> </u>			310199-xx
Complete with connector (female) and 15-pin D-sub connector (male), for PWM 21/EIB 741				310196-xx
With one connector (female)	<u></u>			309777-xx
Cable only	>			816317-xx
Mating element on connecting cable to encoder connector	Connector (female)	For cable	Ø 8 mm	291697-05
Connector on cable for connection to subsequent electronics	Connector (male)	For cable	Ø 8 mm Ø 6 mm	291697-08 291697-07
Coupling on connecting cable	Coupling (male)	For cable	Ø 4.5 mm Ø 6 mm Ø 8 mm	291698-14 291698-03 291698-04
Flange socket for mounting on subsequent electronics	Flange socket (female)			315892-08
Mounted couplings	With flange (female)		Ø 6 mm Ø 8 mm	291698-17 291698-07
	With flange (male)		Ø 6 mm Ø 8 mm	291698-08 291698-31
	With central fastening (male)		Ø 6 mm to 10 mm	741045-01
Adapter ~ 1 V _{PP} /11 μA _{PP} For converting the 1 V _{PP} signals to 11 μA _{PP} ; M23 connector (female), 12-pin and M23 connector (male), 9-pin				364914-01

A_P: Cross section of power supply lines

EnDat adapter and connecting cables

8-pin M12

17-pin M23

PUR connecting cables 8-pin, Ø 3.7 mm: $[1(4 \times 0.06 \text{ mm}^2) + (4 \times 0.06 \text{ mm}^2)]; A_P = 2 \times 0.06 \text{ mm}^2$ 8-pin, Ø 6 mm: $[2(2 \times 0.09 \text{ mm}^2) + 2(2 \times 0.16 \text{ mm}^2)]; A_P = 2 \times 0.16 \text{ mm}^2$ 17-pin, Ø 8 mm: $[(4 \times 0.16 \text{ mm}^2) + 4(2 \times 0.16 \text{ mm}^2) + (4 \times 0.5 \text{ mm}^2)]; A_P = 2 \times 0.5 \text{ mm}^2$			EnDat without incremental signals	
	Cable diameter	6 mm	3.7 mm	8 mm
Complete with connector (female) and coupling (male)	<u> </u>	1036372-xx	1118858-xx	323897-xx 340302-xx
Complete with right-angle connector (female) and coupling (male)		1036386-xx	1118863-xx	-
Complete with connector (female) and D-sub connector (female), 15-pin, for TNC (position inputs)		1036521-xx	_	332115-xx
Complete with connector (female) and D-sub connector (female), 25-pin, for TNC (speed inputs)		1133104-xx	_	336376-xx 509667-xx
Complete with connector (female) and D-sub connector (male), 15-pin, for IK 215, PWM 21, EIB 741, etc.		1036526-xx	1118865-xx	324544-xx
Complete with right-angle connector (female) and D-sub connector (male), 15-pin, for IK 215, PWM 21, EIB 741, etc.		1133855-xx	1118867-xx	-
With one connector (female)	□	1129581-xx ¹⁾	_	309778-xx
With one right-angle connector (female)	<u>F</u>	1133799-xx ¹⁾	_	_
Cable only	≯ ———≪	1150200-xx	_	816322-xx

Italics: Cable with assignment for "encoder shaft speed" input (MotEnc EnDat)

1) Use the connecting element for 8 MHz signal transmission

A_P: Cross section of power supply lines

For more adapter and connecting cables, see Cables and Connecting Elements.

EnDat connecting cables

8-pin 19-pin M12 M23

PUR adapter cable [1(4 × 0.14 mm ²) + (4 × 0.34 mm ²)]; $A_P = 0$	EnDat without incremental signals	
Complete with M23 connector (female), 9-pin, and M12 coupling (male), 8-pin	Ø 6 mm Ø 8 mm	1136863-xx 1136874-xx
Complete with M23 connector (female), 9-pin, and D-sub connector (female), 15-pin, for PWM 21	Ø 6 mm	1173166-xx

A_P: Cross section of power supply lines

HMC 6 connecting cable

PUR connecting cables Communication and supply: 2 x (2 x 0.09 Power and PE: 1 x (3 x 1.5 mm ²) + 1 x 1.5	1.5 mm ²	4 mm ²	
With one Hybrid connecting element with HMC 6 power wires	→	1188098-xx	1188099-xx

You can find more information on the HMC 6 in the Product Information document *HMC 6*.

Siemens connecting cable

PUR connecting cable \varnothing 6.8 m; [2 x (2 x 0.17 mm ²) + (2 x 0.24 mm ²)]; A _P = 0.24 mm ²			
Complete with M12 connector (female) and M12 coupling (male), 8 pins each		822504-xx	
Complete with 8-pin M12 connector (female) and Siemens RJ45 connector (IP67)		1094652-xx	
Complete with 8-pin M12 connector (female) and Siemens RJ45 connector (IP20)		1093042-xx	
Complete with 9-pin M23 SpeedTEC connector (female) and Siemens RJ45 connector (IP20)		1121546-xx	
Complete with 9-pin M23 connector (female) and Siemens RJ45 connector (IP20)		1117540-xx	
Complete with M23-SpeedTEC connector (female) and M12 coupling (male), 8-pin	<u></u>	1121536-xx	

A_P: Cross section of power supply lines

SpeedTEC is a registered trademark of TE Connectivity Industrial GmbH.

Interface electronics

Interface electronics from HEIDENHAIN adapt the encoder signals to the interface of the subsequent electronics. They are used when the subsequent electronics cannot directly process the output signals from HEIDENHAIN encoders, or if additional interpolation of the signals is necessary.

Input signals of the interface electronics

Interface electronics from HEIDENHAIN can be connected to encoders with sinusoidal signals of 1 V_{PP} (voltage signals) or 11 μ A_{PP} (current signals). Encoders with the serial interfaces EnDat or SSI can also be connected to various interface electronics.

Output signals of the interface electronics

Interface electronics with the following interfaces to the subsequent electronics are available:

- TTL square-wave pulse trains
- EnDat 2.2
- DRIVE-CLiQ
- Fanuc Serial Interface
- Mitsubishi high speed interface
- Yaskawa Serial Interface
- Profibus

Interpolation of the sinusoidal input signals

In addition to being converted, the sinusoidal encoder signals are also interpolated in the interface electronics. This permits finer measuring steps and, as a result, higher control quality and better positioning behavior.

Formation of a position value

Some interface electronics have an integrated counting function. Starting from the last reference point set, an absolute position value is formed when the reference mark is traversed, and is transferred to the subsequent electronics.

Box design

Plug design

Version for integration

Top-hat rail design

DRIVE-CLiQ is a registered trademark of SIEMENS AG.

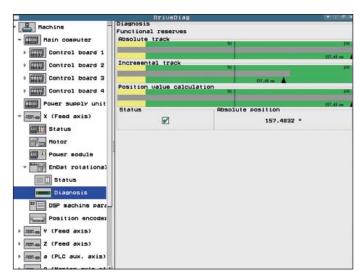
Outputs		Inputs		Design – degree of protection	Interpolation ¹⁾ or subdivision	Model
Interface	Qty.	Interface	Qty.	degree of protection	SUDUIVISION	
ПППГ	1	∼1 V _{PP}	1	Box design – IP65	5/10-fold	IBV 101
					20/25/50/100-fold	IBV 102
					Without interpolation	IBV 600
					25/50/100/200/400-fold	IBV 660 B
				Plug design – IP40	5/10/20/25/50/100-fold	APE 371
				Version for integration –	5/10-fold	IDP 181
				IP00	20/25/50/100-fold	IDP 182
		∕ 11 μA _{PP}	1	Box design – IP65	5/10-fold	EXE 101
					20/25/50/100-fold	EXE 102
					Without/5-fold	EXE 602E
					25/50/100/200/400-fold	EXE 660B
				Version for integration – IP00	5-fold	IDP 101
	2	2 V _{PP}	1	Box design – IP65	2-fold	IBV 6072
Adjustable	↑ 1 V _{PP} Adjustable				5/10-fold	IBV 6172
					5/10-fold and 20/25/50/100-fold	IBV 6272
EnDat 2.2	1	∼ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192
				Plug design – IP40	≤ 16384-fold subdivision	EIB 392
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1512
DRIVE-CLiQ	1	EnDat 2.2	1	Box design – IP65	_	EIB 2391S
Fanuc Serial Interface	1	∼ 1 Vpp	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192 F
Interiace				Plug design – IP40	≤ 16384-fold subdivision	EIB 392 F
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592F
Mitsubishi high speed interface	1	1 ~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192 M
эреей пленасе				Plug design – IP40	≤ 16384-fold subdivision	EIB 392M
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592M
Yaskawa Serial Interface	1	EnDat 2.2 ²⁾	1	Plug design – IP40	-	EIB 3391Y
PROFIBUS-DP	1	EnDat 2.1; EnDat 2.2	1	Top-hat rail design	-	PROFIBUS Gateway

¹⁾ Switchable 2) Only LIC 4100 with 5 nm measuring step, LIC 2100 with 50 nm and 100 nm measuring steps

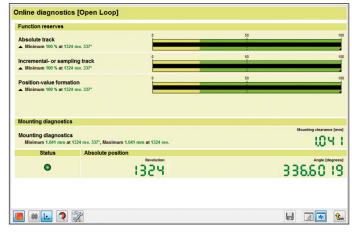
Diagnostic and testing equipment

HEIDENHAIN encoders provide all information necessary for commissioning, monitoring and diagnostics. The type of available information depends on whether the encoder is incremental or absolute and which interface is used.

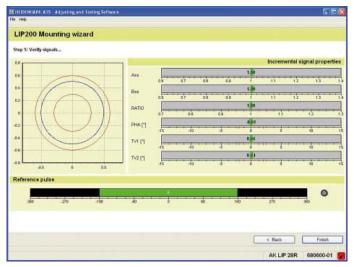
Incremental encoders mainly have 1 V_{PP}, TTL or HTL interfaces. TTL and HTL encoders monitor their signal amplitudes internally and generate a simple fault detection signal. With 1 V_{PP} signals, the analysis of output signals is possible only in external test devices or through computation in the subsequent electronics (analog diagnostics interface).


Absolute encoders operate with serial data transfer. Depending on the interface, additional 1 V_{PP} incremental signals can be output. The signals are monitored comprehensively within the encoder. The monitoring result (especially with valuation numbers) can be transferred along with the position values through the serial interface to the subsequent electronics (digital diagnostics interface). The following information is available:

- Error message: Position value is not reliable.
- Warning: An internal functional limit of the encoder has been reached
- Valuation numbers:
 - Detailed information on the encoder's functional reserve
 - Identical scaling for all HEIDENHAIN encoders
 - Cyclic output is possible


This enables the subsequent electronics to evaluate the current status of the encoder with little effort even in closed-loop mode.

HEIDENHAIN offers the appropriate PWM inspection devices and PWT test devices for encoder analysis. There are two types of diagnostics, depending on how the devices are integrated:


- Encoder diagnostics: The encoder is connected directly to the test or inspection device. This makes a comprehensive analysis of encoder functions possible.
- Diagnostics in the control loop: The PWM phase meter is looped into the closed control loop (e.g. through a suitable testing adapter). This makes a real-time diagnosis of the machine or system possible during operation. The functions depend on the interface.

Diagnostics in the control loop on HEIDENHAIN controls with display of the valuation number or the analog encoder signals

Diagnostics using PWM 21 and ATS software

Commissioning using PWM 21 and ATS software

PWM 21

Together with the ATS adjusting and testing software, the PWM 21 phase angle measuring unit serves for diagnosis and adjustment of HEIDENHAIN encoders.

For more information, see the *PWM 21/ATS Software* Product Information document.

	PWM 21
Encoder input	 EnDat 2.1 or EnDat 2.2 (absolute value with or without incremental signals) DRIVE-CLiQ Fanuc Serial Interface Mitsubishi high speed interface Yaskawa Serial Interface Panasonic serial interface SSI 1 V_{PP}/TTL/11 μA_{PP} HTL (via signal adapter)
Interface	USB 2.0
Voltage supply	AC 100 V to 240 V or DC 24 V
Dimensions	258 mm × 154 mm × 55 mm

	ATS
Languages	Choice between English and German
Functions	 Position display Connection dialog Diagnostics Mounting wizard for EBI/ECI/EQI, LIP 200, LIC 4000 and others Additional functions (if supported by the encoder) Memory contents
System requirements and recommendations	PC (dual-core processor > 2 GHz) RAM > 2 GB Operating systems: Windows Vista (32-bit), 7, 8, and 10 (32-bit/64-bit) 500 MB free space on hard disk

 ${\sf DRIVE\text{-}CLiQ}\ is\ a\ registered\ trademark\ of\ SIEMENS\ AG.$

PWT 100

The PWT 100 is a testing device for checking the function and adjustment of incremental and absolute HEIDENHAIN encoders. Thanks to its compact dimensions and robust design, the PWT 100 is ideal for mobile use.

	PWT 100
Encoder input Only for HEIDENHAIN encoders	 EnDat Fanuc Serial Interface Mitsubishi high speed interface Panasonic Serial Interface Yaskawa Serial Interface 1 V_{PP} 11 µA_{PP} TTL
Display	4.3" color flat-panel display (touch screen)
Voltage supply	DC 24 V Power consumption: max. 15 W
Operating temperature	0 °C to 40 °C
Protection EN 60 529	IP20
Dimensions	≈ 145 mm x 85 mm x 35 mm

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

2 +49 8669 31-0 FAX +49 8669 32-5061 E-mail: info@heidenhain.de

www.heidenhain.de

Vollständige und weitere Adressen siehe www.heidenhain.de For complete and further addresses see www.heidenhain.de

HEIDENHAIN Vertrieb Deutschland DF

83301 Traunreut, Deutschland
© 08669 31-3132
FAX 08669 32-3132 E-Mail: hd@heidenhain.de

HEIDENHAINTechnisches Büro Nord

12681 Berlin, Deutschland © 030 54705-240

HEIDENHAIN Technisches Büro Mitte

07751 Jena, Deutschland ② 03641 4728-250

HEIDENHAIN Technisches Büro West 44379 Dortmund, Deutschland

0231 618083-0

HEIDENHAIN Technisches Büro Südwest

70771 Leinfelden-Echterdingen, Deutschland **2** 0711 993395-0

HEIDENHAIN Technisches Büro Südost

83301 Traunreut, Deutschland
② 08669 31-1345

AR NAKASE SRL.

B1653AOX Villa Ballester, Argentina www.heidenhain.com.ar

HEIDENHAIN Techn. Büro Österreich AT

83301 Traunreut, Germany www.heidenhain.de

FCR MOTION TECHNOLOGY PTY LTD AU

Laverton North Victoria 3026, Australia E-mail: sales@fcrmotion.com

HEIDENHAIN NV/SA BE

1760 Roosdaal, Belgium www.heidenhain.be

BG ESD Bulgaria Ltd. Sofia 1172, Bulgaria www.esd.bg

BR **HEIDENHAIN Brasil Ltda.**

04763-070 - São Paulo - SP, Brazil www.heidenhain.com.br

GERTNER Service GmbH BY

220026 Minsk, Belarus www.heidenhain.by

HEIDENHAIN CORPORATION CA

Mississauga, OntarioL5T2N2, Canada www.heidenhain.com

HEIDENHAIN (SCHWEIZ) AG CH

8603 Schwerzenbach, Switzerland www.heidenhain.ch

DR. JOHANNES HEIDENHAIN (CHINA) Co., Ltd. CN

Beijing 101312, China www.heidenhain.com.cn

CZ HEIDENHAIN s.r.o.

102 00 Praha 10, Czech Republic www.heidenhain.cz

TPTEKNIK A/S DK

2670 Greve, Denmark www.tp-gruppen.dk

FS **FARRESA ELECTRONICA S.A.**

08028 Barcelona, Spain www.farresa.es

HEIDENHAIN Scandinavia AB FI

01740 Vantaa, Finland www.heidenhain.fi

HEIDENHAIN FRANCE sarl 92310 Sèvres, France FR

www.heidenhain.fr

GB

HEIDENHAIN (G.B.) Limited Burgess Hill RH15 9RD, United Kingdom www.heidenhain.co.uk

GR MB Milionis Vassilis

17341 Athens, Greece www.heidenhain.gr

HEIDENHAIN LTD HK

Kowloon, Hong Kong E-mail: sales@heidenhain.com.hk

HR Croatia → SL

HEIDENHAIN Kereskedelmi Képviselet 1239 Budapest, Hungary www.heidenhain.hu HU

ID PT Servitama Era Toolsindo

Jakarta 13930, Indonesia E-mail: ptset@group.gts.co.id

NEUMO VARGUS MARKETING LTD. IL

Holon, 58859, Israel E-mail: neumo@neumo-vargus.co.il

IN **HEIDENHAIN Optics & Electronics India Private Limited**

Chetpet, Chennai 600 031, India www.heidenhain.in

IT HEIDENHAIN ITALIANA S.r.I.

20128 Milano, Italy www.heidenhain.it

.IP

HEIDENHAIN K.K. Tokyo 102-0083, Japan

www.heidenhain.co.jp

HEIDENHAIN Korea LTD. KR

Gasan-Dong, Seoul, Korea 153-782

www.heidenhain.co.kr

HEIDENHAIN CORPORATION MEXICO MX

20290 Aguascalientes, AGS., Mexico E-mail: info@heidenhain.com

MY ISOSERVE SDN. BHD.

43200 Balakong, Selangor

E-mail: sales@isoserve.com.my

HEIDENHAIN NEDERLAND B.V. NL

6716 BM Ede, Netherlands

www.heidenhain.nl

NO

HEIDENHAIN Scandinavia AB 7300 Orkanger, Norway www.heidenhain.no

Llama ENGINEERING Ltd NZ

5012 Wellington, New Zealand E-mail: info@llamaengineering.co.nz РΗ MACHINEBANKS' CORPORATION

Quezon City, Philippines 1113 E-mail: info@machinebanks.com

PL

02-384 Warszawa, Poland www.heidenhain.pl

PT

FARRESA ELECTRÓNICA, LDA. 4470 - 177 Maia, Portugal www.farresa.pt

HEIDENHAIN Reprezentanță Romania Brașov, 500407, Romania RO

www.heidenhain.ro

RS Serbia → BG

RU **000 HEIDENHAIN**

115172 Moscow, Russia www.heidenhain.ru

SE **HEIDENHAIN Scandinavia AB**

12739 Skärholmen, Sweden www.heidenhain.se

HEIDENHAIN PACIFIC PTE LTD SG

Singapore 408593 www.heidenhain.com.sg

SK KOPRETINATN s.r.o.

91101 Trencin, Slovakia www.kopretina.sk

SL

NAVO d.o.o. 2000 Maribor, Slovenia

www.heidenhain.si

HEIDENHAIN (THAILAND) LTD TH

Bangkok 10250, Thailand www.heidenhain.co.th

TR

T&M Mühendislik San. ve Tic. LTD. STİ. 34775 Y. Dudullu -

Ümraniye-Istanbul, Turkey

www.heidenhain.com.tr TW

HEIDENHAIN Co., Ltd.Taichung 40768, Taiwan R.O.C.

www.heidenhain.com.tw

UA Gertner Service GmbH Büro Kiev

02094 Kiev, Ukraine

www.heidenhain.ua

HEIDENHAIN CORPORATION US Schaumburg, IL 60173-5337, USA www.heidenhain.com

VE Maquinaria Diekmann S.A.

Caracas, 1040-A, Venezuela E-mail: purchase@diekmann.com.ve

VN AMS Co. Ltd

HCM City, Vietnam E-mail: davidgoh@amsvn.com

MAFEMA SALES SERVICES C.C. ZΑ

Midrand 1685, South Africa www.heidenhain.co.za

