HEIDENHAIN’s Popular Mill-Turn Control Adds Powerful New Features

June 20, 2016

INFO mini header-circleThe TNC 640, HEIDENHAIN’s high performance mill-turn control, has added powerful new cycles and features. Enhanced graphics, interpolation turning and gear hobbing are some examples that will extend the versatility of the TNC 640 to new applications such as for machining large parts for power plants. Additionally, new manual probing cycles will make it easier for the operator to setup workpieces.

The TNC 640’s new graphics package includes a CAD viewer that opens any *.Step, *.Iges and *.Dxf file, and allows an operator to evaluate the workpiece at the control. For the machine builder, DCM (Dynamic Collision Monitoring) is available on the TNC. For this, HEIDENHAIN created a M3D converter. Through this powerful PC tool, CAD files of components in the machining envelope can be merged, edited and added to the Collision Monitoring.

And when the new interpolation turning feature is in use with a TNC 640, the associated machine tool’s linear axes move along a circle, while the cutting edge with the milling spindle is always oriented to the center of rotation (outside machining) or away from the center of rotation (inside machining). Interpolation turning is especially well suited for manufacturing large, rotationally-symmetric sealing surfaces and, for example, for machining the housings of components of power plant technology (energy generation).

Another new feature is Cycle 880, for gear hobbing of external cylindrical and helical teeth. This machining process is performed through synchronization of the tool and lathe spindles. Furthermore, the cycle positions the rotary axis to the required tilting position and performs the infeed movements to the workpiece in the radial direction, and the milling movements in the axial direction.

This machining process is for external cylindrical and helical teeth, and is performed through synchronization of the tool and lathe spindles.

Lastly, determining the 3-D basic rotation for a plane surface has been added as a manual probing function. The misalignment of a surface can be measured by probing three points in any direction on that plane. Subsequently, the result can be transferred to the datum table and/or the workpiece can be aligned.

Want to learn more?

Contact us today

Related resources and news

CCD First ATP of HEIDENHAIN Controls in North America

Community College of Denver’s Advanced Manufacturing Center is the first HEIDENHAIN authorized training partner in North America, focusing on CNC controls.

Read more »

Networking the Right Way

How does Connected Machining work in practice? Let’s produce a bicycle pedal using a HEIDENHAIN control as the central pivot of digital communication.

Read more »

Different Types of Encoders and Their Applications

Encoders play an integral role in almost every mechanical system that involves motion monitoring or control. There are a variety of types that work with different kinds of motion with different options for how they detect and communicate. Let’s explore some of the foundational elements and variables in the world of encoders: What Does an […]

Read more »