Solution for Position and Speed Control on Rotational Axes ror Rotary Tables and Tilting Axes

The RCN 5000 series distinguishes by featuring a hollow shaft with a diameter of Ø 35 mm, compact outside dimensions, relative large mounting tolerances and a pluggable cable assembly. Its new scanning process and high signal quality permits comparatively high tolerance to contamination and higher permissible shaft speeds. With its monitoring and diagnostic capabilities, the EnDat interface fulfills the requirements for high system availability and is also possible to install as a single-encoder system in safety-related applications.

View PDF »

HEIDENHAIN angle encoders in Adcole Model 1200

Did you know that a HEIDENHAIN angle encoder is a vital component in Adcole’s Model 1200 measuring machine known worldwide as the standard for measuring engine crankshafts and camshafts? Adcole Corporation headquartered in Massachusetts, takes great pride as the market leader and asserts its ability to provide the highest accuracy cylindrical coordinate measuring machines (CMMs). “No other company can better measure critically important reciprocating engine components,” said Steve Corrado, Adcole’s Engineering Manager.

Read more »

An ultra-precise waterjet cutting machine for tile and stone

Did you know that multiple HEIDENHAIN components and systems, including HEIDENHAIN’s iTNC 530 contouring control, are critical components of innovative ultra-precise waterjet cutting machines? Because an ultra high-pressure waterjet machine’s ability to erode and cut through stone or metal is highly dependent on a smooth, consistent velocity, its measurement and feedback components must be reliable and in sync.

Read more »

Calculate the Expected Measuring Uncertainty for Machining Accuracy over Large Measuring Lengths

With its specification of the resulting length error after multipoint linear error compensation, the LIDA 400 provides the machine tool builder with an important index. It allows him to prepare a good assessment of the measuring uncertainty to be expected, and at the same time indicates the high accuracy of the LIDA 400 series.

View PDF »

Semiclosed vs Closed Loop Accuracy on Machine Tools

A decisive factor for the productivity of a machine tool, besides accuracy (can I use this equipment to manufacture this part in a reliable process), is the availability of the equipment. High productivity with consistently high part quality is most easily achieved with linear or angle encoders. Today, their application is considered standard, not only on universal machines, but also on production machines.

View PDF »

Reduce Setup Time, Increase Machine Use Time, and Improve Dimensional Accuracy

The use of touch probes reduces setup times, helps to increase machine usage time, and improves the dimensional accuracy of the finished workpieces. Their setup, measuring and monitoring functions can be performed manually or automatically. Touch probes are used primarily on milling machines and machining centers, and they are suitable for a large number of measuring tasks—both in the workshop and in series production.

View PDF »

Maintain Machine Accuracy Under High Speed and Acceleration

The successful fulfillment of manufacturing orders requires machine tools with high thermal stability. Machine accuracy must be maintained even under strongly varying load conditions. As a consequence, feed axes must achieve the required accuracy over the complete traverse range even with strongly varying speeds and machining forces. Linear and angle encoders ensure high precision of the components to be manufactured even under strongly varying operating conditions of machine tools.

View PDF »

Machining accuracy of machine tools

Productivity and accuracy of machine tools are important competition aspects. Rapidly changing operating conditions for machine tools, however, make it difficult to increase productivity and accuracy. In the manufacture of parts, increasingly small batch sizes have to be produced economically, and yet accurately. In the aerospace industry, maximum cutting capacity is needed for the roughing processes, whereas the subsequent fi nishing processes must be executed with maximum precision. For milling high-quality molds, high material removal rates are required during roughing and excellent surface quality must be obtained after fi nishing. At the same time, maximum contouring feed rates are necessary to realize the required minimum distances between the paths within acceptable machining times.

View PDF »

Uniformly Digital – The new hardware design for controls from HEIDENHAIN

For many years now, controls from HEIDENHAIN have been proving themselves in daily use in the workshop. Along with their suitability for the workshop, they are also characterized by the robust and reliable design of their hardware. At this year’s EMO trade show in Hanover, HEIDENHEIN will present its vision for the controls of tomorrow.

View PDF »